模拟氮化铝基紫外发光二极管中的载流子注入效率

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Photonics Journal Pub Date : 2024-07-18 DOI:10.1109/JPHOT.2024.3430488
Gregor Hofmann;Anton Muhin;Norman Susilo;Friedhard Römer;Tim Wernicke;Michael Kneissl;Bernd Witzigmann
{"title":"模拟氮化铝基紫外发光二极管中的载流子注入效率","authors":"Gregor Hofmann;Anton Muhin;Norman Susilo;Friedhard Römer;Tim Wernicke;Michael Kneissl;Bernd Witzigmann","doi":"10.1109/JPHOT.2024.3430488","DOIUrl":null,"url":null,"abstract":"Numerical simulations of carrier transport in aluminium gallium nitride based ultraviolet light emitting diodes (UV-LED) are performed in order to understand injection efficiency for light sources in the deep ultraviolet. With our simulator, calibrated with experimental data from a 265 nm UV-LED, quantum efficiencies have been analyzed. The maximum internal quantum efficiency (IQE) of 30% consists of the product from radiative recombination efficiency (RRE) of 60% and carrier injection efficiency (CIE) of 50%. It is found that poor hole injection into the active region and a surplus of electrons limit both efficiencies, and leads to significant electron leakage into the p-side. This leakage is bias dependent, and has a minimum at maximum IQE. Further simulations show that distributed polarization doping (DPD) could improve carrier injection efficiency.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 4","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10602746","citationCount":"0","resultStr":"{\"title\":\"Simulation of Carrier Injection Efficiency in AlGaN-Based UV-Light-Emitting Diodes\",\"authors\":\"Gregor Hofmann;Anton Muhin;Norman Susilo;Friedhard Römer;Tim Wernicke;Michael Kneissl;Bernd Witzigmann\",\"doi\":\"10.1109/JPHOT.2024.3430488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical simulations of carrier transport in aluminium gallium nitride based ultraviolet light emitting diodes (UV-LED) are performed in order to understand injection efficiency for light sources in the deep ultraviolet. With our simulator, calibrated with experimental data from a 265 nm UV-LED, quantum efficiencies have been analyzed. The maximum internal quantum efficiency (IQE) of 30% consists of the product from radiative recombination efficiency (RRE) of 60% and carrier injection efficiency (CIE) of 50%. It is found that poor hole injection into the active region and a surplus of electrons limit both efficiencies, and leads to significant electron leakage into the p-side. This leakage is bias dependent, and has a minimum at maximum IQE. Further simulations show that distributed polarization doping (DPD) could improve carrier injection efficiency.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"16 4\",\"pages\":\"1-7\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10602746\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10602746/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10602746/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了了解深紫外光源的注入效率,我们对基于氮化铝镓的紫外发光二极管(UV-LED)中的载流子传输进行了数值模拟。我们的模拟器根据 265 纳米紫外发光二极管的实验数据进行了校准,分析了量子效率。最大内部量子效率(IQE)为 30%,包括辐射重组效率(RRE)60% 和载流子注入效率(CIE)50% 的乘积。研究发现,有源区空穴注入不足和电子过剩限制了这两种效率,并导致大量电子泄漏到 p 面。这种泄漏与偏压有关,并在最大 IQE 时达到最小值。进一步的模拟显示,分布式极化掺杂(DPD)可以提高载流子注入效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation of Carrier Injection Efficiency in AlGaN-Based UV-Light-Emitting Diodes
Numerical simulations of carrier transport in aluminium gallium nitride based ultraviolet light emitting diodes (UV-LED) are performed in order to understand injection efficiency for light sources in the deep ultraviolet. With our simulator, calibrated with experimental data from a 265 nm UV-LED, quantum efficiencies have been analyzed. The maximum internal quantum efficiency (IQE) of 30% consists of the product from radiative recombination efficiency (RRE) of 60% and carrier injection efficiency (CIE) of 50%. It is found that poor hole injection into the active region and a surplus of electrons limit both efficiencies, and leads to significant electron leakage into the p-side. This leakage is bias dependent, and has a minimum at maximum IQE. Further simulations show that distributed polarization doping (DPD) could improve carrier injection efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
期刊最新文献
Investigation of Entire-Space Terahertz Emission From Gas Filament Excited by a Two-Color Field High Precision Piston Error Sensing of Segmented Telescope Based on Frequency Domain Filtering FSPI-R&D: Joint Reconstruction and Detection to Enhance the Object Detection Precision of Fourier Single-Pixel Imaging Integrated Physical Layer Key Distribution by Optical Steganography in Quantum Noise Stream Cipher System Defect Density-Dependent Dynamics of Double Absorber Layered Perovskite Solar Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1