脂肪细胞与免疫细胞之间的细胞间串扰。

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM American journal of physiology. Endocrinology and metabolism Pub Date : 2024-09-01 Epub Date: 2024-07-31 DOI:10.1152/ajpendo.00024.2024
Jiadai Liu, Yong Chen
{"title":"脂肪细胞与免疫细胞之间的细胞间串扰。","authors":"Jiadai Liu, Yong Chen","doi":"10.1152/ajpendo.00024.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is a metabolic disorder with pandemic-like implications, lacking viable pharmaceutical treatments currently. Thermogenic adipose tissues, including brown and beige adipose tissues, play an essential role in regulating systemic energy homeostasis and have emerged as appealing therapeutic targets for the treatment of obesity and obesity-related diseases. The function of adipocytes is subject to complex regulation by a cellular network of immune signaling pathways in response to environmental signals. However, the specific regulatory roles of immune cells in thermogenesis and relevant involving mechanisms are still not well understood. Here, we concentrate on our present knowledge of the interaction between thermogenic adipocytes and immune cells and present an overview of cellular and molecular mechanisms underlying immunometabolism in adipose tissues. We discuss cytokines, especially interleukins, which originate from widely variable sources, and their impacts on the development and function of thermogenic adipocytes. Moreover, we summarize the neuroimmune regulation in heat production and expand a new mode of intercellular communication mediated by mitochondrial transfer. The crosstalk between immune cells and adipocytes achieves adipose tissue homeostasis and systemic energy balance. A deep understanding of this intricate interaction would provide evidence for improving thermogenic efficiency by remodeling the immune microenvironment. Interventions based on these factors show a high potential to prevent adverse metabolic outcomes in patients with obesity.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E371-E383"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell-cell crosstalk between fat cells and immune cells.\",\"authors\":\"Jiadai Liu, Yong Chen\",\"doi\":\"10.1152/ajpendo.00024.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Obesity is a metabolic disorder with pandemic-like implications, lacking viable pharmaceutical treatments currently. Thermogenic adipose tissues, including brown and beige adipose tissues, play an essential role in regulating systemic energy homeostasis and have emerged as appealing therapeutic targets for the treatment of obesity and obesity-related diseases. The function of adipocytes is subject to complex regulation by a cellular network of immune signaling pathways in response to environmental signals. However, the specific regulatory roles of immune cells in thermogenesis and relevant involving mechanisms are still not well understood. Here, we concentrate on our present knowledge of the interaction between thermogenic adipocytes and immune cells and present an overview of cellular and molecular mechanisms underlying immunometabolism in adipose tissues. We discuss cytokines, especially interleukins, which originate from widely variable sources, and their impacts on the development and function of thermogenic adipocytes. Moreover, we summarize the neuroimmune regulation in heat production and expand a new mode of intercellular communication mediated by mitochondrial transfer. The crosstalk between immune cells and adipocytes achieves adipose tissue homeostasis and systemic energy balance. A deep understanding of this intricate interaction would provide evidence for improving thermogenic efficiency by remodeling the immune microenvironment. Interventions based on these factors show a high potential to prevent adverse metabolic outcomes in patients with obesity.</p>\",\"PeriodicalId\":7594,\"journal\":{\"name\":\"American journal of physiology. Endocrinology and metabolism\",\"volume\":\" \",\"pages\":\"E371-E383\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Endocrinology and metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpendo.00024.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00024.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

肥胖症是一种具有大流行病影响的代谢性疾病,目前缺乏可行的药物治疗方法。致热脂肪组织(包括棕色和米色脂肪组织)在调节全身能量平衡方面发挥着重要作用,已成为治疗肥胖和肥胖相关疾病的诱人治疗靶点。脂肪细胞的功能受到细胞免疫信号通路网络的复杂调控,以响应环境信号。然而,人们对免疫细胞在产热过程中的具体调控作用和相关参与机制仍不甚了解。在此,我们将集中介绍我们目前对产热脂肪细胞和免疫细胞之间相互作用的了解,概述脂肪组织中免疫代谢的细胞和分子机制。我们讨论了细胞因子,特别是白细胞介素,其来源多种多样,以及它们对产热脂肪细胞的发育和功能的影响。此外,我们还总结了热量产生过程中的神经免疫调节,并拓展了线粒体传递介导的细胞间通信新模式。免疫细胞和脂肪细胞之间的相互作用实现了脂肪组织的平衡和全身能量平衡。深入了解这种错综复杂的相互作用将为通过重塑免疫微环境来提高生热效率提供证据。基于这些因素的干预措施显示出预防肥胖患者不良代谢结果的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cell-cell crosstalk between fat cells and immune cells.

Obesity is a metabolic disorder with pandemic-like implications, lacking viable pharmaceutical treatments currently. Thermogenic adipose tissues, including brown and beige adipose tissues, play an essential role in regulating systemic energy homeostasis and have emerged as appealing therapeutic targets for the treatment of obesity and obesity-related diseases. The function of adipocytes is subject to complex regulation by a cellular network of immune signaling pathways in response to environmental signals. However, the specific regulatory roles of immune cells in thermogenesis and relevant involving mechanisms are still not well understood. Here, we concentrate on our present knowledge of the interaction between thermogenic adipocytes and immune cells and present an overview of cellular and molecular mechanisms underlying immunometabolism in adipose tissues. We discuss cytokines, especially interleukins, which originate from widely variable sources, and their impacts on the development and function of thermogenic adipocytes. Moreover, we summarize the neuroimmune regulation in heat production and expand a new mode of intercellular communication mediated by mitochondrial transfer. The crosstalk between immune cells and adipocytes achieves adipose tissue homeostasis and systemic energy balance. A deep understanding of this intricate interaction would provide evidence for improving thermogenic efficiency by remodeling the immune microenvironment. Interventions based on these factors show a high potential to prevent adverse metabolic outcomes in patients with obesity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
0.00%
发文量
98
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.
期刊最新文献
Circulating interleukin-33 levels in obesity and type 2 diabetes: a systematic review and meta-analysis. Arginine vasopressin induces analgesic effects and inhibits pyramidal cells in the anterior cingulate cortex in spared nerve injured mice. Metabolic shifts in ratio of ucOcn to cOcn toward bone resorption contribute to age-dependent bone loss in male mice. Postnatal surge of adipose-secreted leptin is a robust predictor of fat mass trajectory in mice. Adipose tissue insulin resistance in children and adolescents: linking glucose and free fatty acid metabolism to hepatic injury markers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1