{"title":"利用多重图神经网络进行跨特征交互式表格数据建模","authors":"Mang Ye;Yi Yu;Ziqin Shen;Wei Yu;Qingyan Zeng","doi":"10.1109/TKDE.2024.3440654","DOIUrl":null,"url":null,"abstract":"The rising popularity of tabular data in data science applications has led to a surge of interest in utilizing deep neural networks (DNNs) to address tabular problems. Existing deep neural network methods are not effective in handling two fundamental challenges that are inherent in tabular data: permutation invariance (where the labels remain unchanged regardless of element order) and local dependency (where predictive labels are solely determined by local features). Furthermore, given the inherent heterogeneity among elements in tabular data, effectively capturing heterogeneous feature interactions remains unresolved. In this paper, we propose a novel Multiplex Cross-Feature Interaction Network (MPCFIN) by explicitly and systematically modeling feature relations with interactive graph neural networks. Specifically, MPCFIN first learns the most relevant features associated with individual features, and merges them to form cross-feature embedding. Subsequently, we design a multiplex graph neural network to learn enhanced representation for each sample. Comprehensive experiments on seven datasets demonstrate that MPCFIN exhibits superior performance over deep neural network methods in modeling the tabular data, showcasing consistent interpretability in its cross-feature embedding module for medical diagnosis applications.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"7851-7864"},"PeriodicalIF":8.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Feature Interactive Tabular Data Modeling With Multiplex Graph Neural Networks\",\"authors\":\"Mang Ye;Yi Yu;Ziqin Shen;Wei Yu;Qingyan Zeng\",\"doi\":\"10.1109/TKDE.2024.3440654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rising popularity of tabular data in data science applications has led to a surge of interest in utilizing deep neural networks (DNNs) to address tabular problems. Existing deep neural network methods are not effective in handling two fundamental challenges that are inherent in tabular data: permutation invariance (where the labels remain unchanged regardless of element order) and local dependency (where predictive labels are solely determined by local features). Furthermore, given the inherent heterogeneity among elements in tabular data, effectively capturing heterogeneous feature interactions remains unresolved. In this paper, we propose a novel Multiplex Cross-Feature Interaction Network (MPCFIN) by explicitly and systematically modeling feature relations with interactive graph neural networks. Specifically, MPCFIN first learns the most relevant features associated with individual features, and merges them to form cross-feature embedding. Subsequently, we design a multiplex graph neural network to learn enhanced representation for each sample. Comprehensive experiments on seven datasets demonstrate that MPCFIN exhibits superior performance over deep neural network methods in modeling the tabular data, showcasing consistent interpretability in its cross-feature embedding module for medical diagnosis applications.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"7851-7864\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10631296/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10631296/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Cross-Feature Interactive Tabular Data Modeling With Multiplex Graph Neural Networks
The rising popularity of tabular data in data science applications has led to a surge of interest in utilizing deep neural networks (DNNs) to address tabular problems. Existing deep neural network methods are not effective in handling two fundamental challenges that are inherent in tabular data: permutation invariance (where the labels remain unchanged regardless of element order) and local dependency (where predictive labels are solely determined by local features). Furthermore, given the inherent heterogeneity among elements in tabular data, effectively capturing heterogeneous feature interactions remains unresolved. In this paper, we propose a novel Multiplex Cross-Feature Interaction Network (MPCFIN) by explicitly and systematically modeling feature relations with interactive graph neural networks. Specifically, MPCFIN first learns the most relevant features associated with individual features, and merges them to form cross-feature embedding. Subsequently, we design a multiplex graph neural network to learn enhanced representation for each sample. Comprehensive experiments on seven datasets demonstrate that MPCFIN exhibits superior performance over deep neural network methods in modeling the tabular data, showcasing consistent interpretability in its cross-feature embedding module for medical diagnosis applications.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.