开关拓扑下非线性多代理系统的基于数据的分布式共识优化控制

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Robust and Nonlinear Control Pub Date : 2024-08-08 DOI:10.1002/rnc.7574
Ying Xu, Kewen Li, Yongming Li
{"title":"开关拓扑下非线性多代理系统的基于数据的分布式共识优化控制","authors":"Ying Xu, Kewen Li, Yongming Li","doi":"10.1002/rnc.7574","DOIUrl":null,"url":null,"abstract":"This article investigates the issue of data‐based distributed consensus optimal control for a class of affine nonlinear multi‐agent systems (MASs) under switching topology with external disturbances. With the help of the game theory, the distributed adaptive optimal consensus control issue can be formulated into a zero‐sum (ZM) game problem. In control design, a data‐based integral reinforcement learning (IRL) algorithm is used to solve the coupled Hamilton–Jacobi–Isaac (HJI) equation with unknown drift dynamics. Meanwhile, to relax the persistent excitation (PE) condition in the traditional optimal control design, the experience replay (ER) technique is introduced. Combining IRL algorithm and single critic neural network (NN), a distributed adaptive optimal consensus control approach is designed. The stability of the closed‐loop system is proved by combining the Lyapunov stability theory and the average dwell time method. Finally, a simulation example is given to illustrate the effectiveness of the developed optimal consensus control approach.","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"96 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data‐based distributed consensus optimal control for nonlinear multi‐agent systems under switching topology\",\"authors\":\"Ying Xu, Kewen Li, Yongming Li\",\"doi\":\"10.1002/rnc.7574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates the issue of data‐based distributed consensus optimal control for a class of affine nonlinear multi‐agent systems (MASs) under switching topology with external disturbances. With the help of the game theory, the distributed adaptive optimal consensus control issue can be formulated into a zero‐sum (ZM) game problem. In control design, a data‐based integral reinforcement learning (IRL) algorithm is used to solve the coupled Hamilton–Jacobi–Isaac (HJI) equation with unknown drift dynamics. Meanwhile, to relax the persistent excitation (PE) condition in the traditional optimal control design, the experience replay (ER) technique is introduced. Combining IRL algorithm and single critic neural network (NN), a distributed adaptive optimal consensus control approach is designed. The stability of the closed‐loop system is proved by combining the Lyapunov stability theory and the average dwell time method. Finally, a simulation example is given to illustrate the effectiveness of the developed optimal consensus control approach.\",\"PeriodicalId\":50291,\"journal\":{\"name\":\"International Journal of Robust and Nonlinear Control\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robust and Nonlinear Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/rnc.7574\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/rnc.7574","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类仿射非线性多代理系统(MAS)在外部扰动的切换拓扑条件下基于数据的分布式共识最优控制问题。借助博弈论,分布式自适应最优共识控制问题可表述为零和(ZM)博弈问题。在控制设计中,采用基于数据的积分强化学习(IRL)算法来求解具有未知漂移动态的耦合汉密尔顿-雅各比-伊萨克(HJI)方程。同时,为了放宽传统最优控制设计中的持续激励(PE)条件,引入了经验重放(ER)技术。结合 IRL 算法和单批判神经网络(NN),设计了一种分布式自适应最优共识控制方法。结合李雅普诺夫稳定性理论和平均停留时间法,证明了闭环系统的稳定性。最后,给出了一个仿真实例来说明所开发的最优共识控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data‐based distributed consensus optimal control for nonlinear multi‐agent systems under switching topology
This article investigates the issue of data‐based distributed consensus optimal control for a class of affine nonlinear multi‐agent systems (MASs) under switching topology with external disturbances. With the help of the game theory, the distributed adaptive optimal consensus control issue can be formulated into a zero‐sum (ZM) game problem. In control design, a data‐based integral reinforcement learning (IRL) algorithm is used to solve the coupled Hamilton–Jacobi–Isaac (HJI) equation with unknown drift dynamics. Meanwhile, to relax the persistent excitation (PE) condition in the traditional optimal control design, the experience replay (ER) technique is introduced. Combining IRL algorithm and single critic neural network (NN), a distributed adaptive optimal consensus control approach is designed. The stability of the closed‐loop system is proved by combining the Lyapunov stability theory and the average dwell time method. Finally, a simulation example is given to illustrate the effectiveness of the developed optimal consensus control approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
期刊最新文献
Issue Information Disturbance observer based adaptive predefined-time sliding mode control for robot manipulators with uncertainties and disturbances Issue Information Issue Information A stabilizing reinforcement learning approach for sampled systems with partially unknown models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1