利用德尔塔放射组学追踪接受立体定向磁共振引导放疗的肺部肿瘤的放射反应

Yining Zha , Zezhong Ye , Anna Zapaishchykova , John He , Shu-Hui Hsu , Jonathan E. Leeman , Kelly J. Fitzgerald , David E. Kozono , Raymond H. Mak , Hugo J.W.L. Aerts , Benjamin H. Kann
{"title":"利用德尔塔放射组学追踪接受立体定向磁共振引导放疗的肺部肿瘤的放射反应","authors":"Yining Zha ,&nbsp;Zezhong Ye ,&nbsp;Anna Zapaishchykova ,&nbsp;John He ,&nbsp;Shu-Hui Hsu ,&nbsp;Jonathan E. Leeman ,&nbsp;Kelly J. Fitzgerald ,&nbsp;David E. Kozono ,&nbsp;Raymond H. Mak ,&nbsp;Hugo J.W.L. Aerts ,&nbsp;Benjamin H. Kann","doi":"10.1016/j.phro.2024.100626","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><p>Lung cancer is a leading cause of cancer-related mortality, and stereotactic body radiotherapy (SBRT) has become a standard treatment for early-stage lung cancer. However, the heterogeneous response to radiation at the tumor level poses challenges. Currently, standardized dosage regimens lack adaptation based on individual patient or tumor characteristics. Thus, we explore the potential of delta radiomics from on-treatment magnetic resonance (MR) imaging to track radiation dose response, inform personalized radiotherapy dosing, and predict outcomes.</p></div><div><h3>Materials and methods</h3><p>A retrospective study of 47 MR-guided lung SBRT treatments for 39 patients was conducted. Radiomic features were extracted using Pyradiomics, and stability was evaluated temporally and spatially. Delta radiomics were correlated with radiation dose delivery and assessed for associations with tumor control and survival with Cox regressions.</p></div><div><h3>Results</h3><p>Among 107 features, 49 demonstrated temporal stability, and 57 showed spatial stability. Fifteen stable and non-collinear features were analyzed. Median Skewness and surface to volume ratio decreased with radiation dose fraction delivery, while coarseness and 90th percentile values increased. Skewness had the largest relative median absolute changes (22 %–45 %) per fraction from baseline and was associated with locoregional failure (p = 0.012) by analysis of covariance. Skewness, Elongation, and Flatness were significantly associated with local recurrence-free survival, while tumor diameter and volume were not.</p></div><div><h3>Conclusions</h3><p>Our study establishes the feasibility and stability of delta radiomics analysis for MR-guided lung SBRT. Findings suggest that MR delta radiomics can capture short-term radiographic manifestations of the intra-tumoral radiation effect.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"31 ","pages":"Article 100626"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624000964/pdfft?md5=1de0b8382c5e6c038f7c8805ee279158&pid=1-s2.0-S2405631624000964-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Delta radiomics to track radiation response in lung tumors receiving stereotactic magnetic resonance-guided radiotherapy\",\"authors\":\"Yining Zha ,&nbsp;Zezhong Ye ,&nbsp;Anna Zapaishchykova ,&nbsp;John He ,&nbsp;Shu-Hui Hsu ,&nbsp;Jonathan E. Leeman ,&nbsp;Kelly J. Fitzgerald ,&nbsp;David E. Kozono ,&nbsp;Raymond H. Mak ,&nbsp;Hugo J.W.L. Aerts ,&nbsp;Benjamin H. Kann\",\"doi\":\"10.1016/j.phro.2024.100626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><p>Lung cancer is a leading cause of cancer-related mortality, and stereotactic body radiotherapy (SBRT) has become a standard treatment for early-stage lung cancer. However, the heterogeneous response to radiation at the tumor level poses challenges. Currently, standardized dosage regimens lack adaptation based on individual patient or tumor characteristics. Thus, we explore the potential of delta radiomics from on-treatment magnetic resonance (MR) imaging to track radiation dose response, inform personalized radiotherapy dosing, and predict outcomes.</p></div><div><h3>Materials and methods</h3><p>A retrospective study of 47 MR-guided lung SBRT treatments for 39 patients was conducted. Radiomic features were extracted using Pyradiomics, and stability was evaluated temporally and spatially. Delta radiomics were correlated with radiation dose delivery and assessed for associations with tumor control and survival with Cox regressions.</p></div><div><h3>Results</h3><p>Among 107 features, 49 demonstrated temporal stability, and 57 showed spatial stability. Fifteen stable and non-collinear features were analyzed. Median Skewness and surface to volume ratio decreased with radiation dose fraction delivery, while coarseness and 90th percentile values increased. Skewness had the largest relative median absolute changes (22 %–45 %) per fraction from baseline and was associated with locoregional failure (p = 0.012) by analysis of covariance. Skewness, Elongation, and Flatness were significantly associated with local recurrence-free survival, while tumor diameter and volume were not.</p></div><div><h3>Conclusions</h3><p>Our study establishes the feasibility and stability of delta radiomics analysis for MR-guided lung SBRT. Findings suggest that MR delta radiomics can capture short-term radiographic manifestations of the intra-tumoral radiation effect.</p></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":\"31 \",\"pages\":\"Article 100626\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000964/pdfft?md5=1de0b8382c5e6c038f7c8805ee279158&pid=1-s2.0-S2405631624000964-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624000964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的肺癌是癌症相关死亡的主要原因,立体定向体放射治疗(SBRT)已成为早期肺癌的标准治疗方法。然而,肿瘤水平对辐射的异质性反应带来了挑战。目前,标准化剂量方案缺乏基于患者个体或肿瘤特征的适应性。因此,我们从治疗中的磁共振(MR)成像中探索δ放射组学的潜力,以跟踪放射剂量反应,为个性化放疗剂量提供信息,并预测疗效。使用Pyradiomics提取放射组学特征,并从时间和空间上评估稳定性。结果在 107 个特征中,49 个具有时间稳定性,57 个具有空间稳定性。对 15 个稳定的非共线性特征进行了分析。中位偏斜度和表面体积比随着放射剂量分数的投放而降低,而粗糙度和第90百分位值则有所增加。通过协方差分析,每分次的相对中位绝对值变化最大(22 %-45 %),并且与局部失败相关(p = 0.012)。斜度、拉长度和平坦度与无局部复发生存率显著相关,而肿瘤直径和体积则不相关。结论我们的研究证实了三角放射组学分析在 MR 引导的肺 SBRT 中的可行性和稳定性。研究结果表明,磁共振三角放射组学可以捕捉到瘤内放射效应的短期放射学表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Delta radiomics to track radiation response in lung tumors receiving stereotactic magnetic resonance-guided radiotherapy

Background and purpose

Lung cancer is a leading cause of cancer-related mortality, and stereotactic body radiotherapy (SBRT) has become a standard treatment for early-stage lung cancer. However, the heterogeneous response to radiation at the tumor level poses challenges. Currently, standardized dosage regimens lack adaptation based on individual patient or tumor characteristics. Thus, we explore the potential of delta radiomics from on-treatment magnetic resonance (MR) imaging to track radiation dose response, inform personalized radiotherapy dosing, and predict outcomes.

Materials and methods

A retrospective study of 47 MR-guided lung SBRT treatments for 39 patients was conducted. Radiomic features were extracted using Pyradiomics, and stability was evaluated temporally and spatially. Delta radiomics were correlated with radiation dose delivery and assessed for associations with tumor control and survival with Cox regressions.

Results

Among 107 features, 49 demonstrated temporal stability, and 57 showed spatial stability. Fifteen stable and non-collinear features were analyzed. Median Skewness and surface to volume ratio decreased with radiation dose fraction delivery, while coarseness and 90th percentile values increased. Skewness had the largest relative median absolute changes (22 %–45 %) per fraction from baseline and was associated with locoregional failure (p = 0.012) by analysis of covariance. Skewness, Elongation, and Flatness were significantly associated with local recurrence-free survival, while tumor diameter and volume were not.

Conclusions

Our study establishes the feasibility and stability of delta radiomics analysis for MR-guided lung SBRT. Findings suggest that MR delta radiomics can capture short-term radiographic manifestations of the intra-tumoral radiation effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
期刊最新文献
Results of 2023 survey on the use of synthetic computed tomography for magnetic resonance Imaging-only radiotherapy: Current status and future steps Head and neck automatic multi-organ segmentation on Dual-Energy Computed Tomography Automatic segmentation for magnetic resonance imaging guided individual elective lymph node irradiation in head and neck cancer patients Development of a novel 3D-printed dynamic anthropomorphic thorax phantom for evaluation of four-dimensional computed tomography Technical feasibility of delivering a simultaneous integrated boost in partial breast irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1