Nikolaos Tsoulos, Konstantinos Agiannitopoulos, Kevisa Potska, Anastasia Katseli, Christina Ntogka, Georgia Pepe, Dimitra Bouzarelou, Athanasios Papathanasiou, Dimitrios Grigoriadis, Georgios N Tsaousis, Helen Gogas, Theodore Troupis, Konstantinos Papazisis, Ioannis Natsiopoulos, Vassileios Venizelos, Kyriakos Amarantidis, Stylianos Giassas, Christos Papadimitriou, Elena Fountzilas, Maroulio Stathoulopoulou, Anna Koumarianou, Grigorios Xepapadakis, Alexandru Blidaru, Daniela Zob, Oana Voinea, Mustafa Özdoğan, Mahmut Çerkez Ergören, Alinta Hegmane, Eirini Papadopoulou, George Nasioulas, Christos Markopoulos
{"title":"遗传性癌症的临床和遗传情况:一家临床诊断实验室的经验。","authors":"Nikolaos Tsoulos, Konstantinos Agiannitopoulos, Kevisa Potska, Anastasia Katseli, Christina Ntogka, Georgia Pepe, Dimitra Bouzarelou, Athanasios Papathanasiou, Dimitrios Grigoriadis, Georgios N Tsaousis, Helen Gogas, Theodore Troupis, Konstantinos Papazisis, Ioannis Natsiopoulos, Vassileios Venizelos, Kyriakos Amarantidis, Stylianos Giassas, Christos Papadimitriou, Elena Fountzilas, Maroulio Stathoulopoulou, Anna Koumarianou, Grigorios Xepapadakis, Alexandru Blidaru, Daniela Zob, Oana Voinea, Mustafa Özdoğan, Mahmut Çerkez Ergören, Alinta Hegmane, Eirini Papadopoulou, George Nasioulas, Christos Markopoulos","doi":"10.21873/cgp.20463","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>The application of next-generation sequencing (NGS) technology in the genetic investigation of hereditary cancer is important for clinical surveillance, therapeutic approach, and reducing the risk of developing new malignancies. The aim of the study was to explore genetic predisposition in individuals referred for hereditary cancer.</p><p><strong>Materials and methods: </strong>A total of 8,261 individuals were referred for multigene genetic testing, during the period 2020-2023, in the laboratory, and underwent multigene genetic testing using NGS. Among the examined individuals, 56.17% were diagnosed with breast cancer, 6.77% with ovarian cancer, 2.88% with colorectal cancer, 1.91% with prostate cancer, 6.43% were healthy with a significant family history of cancer, while 3.06% had a different type of cancer and 0.21% had not provided any information. Additionally, in 85 women with breast cancer we performed whole exome sequencing analysis.</p><p><strong>Results: </strong>20% of the examined individuals carried a pathogenic variant. Specifically, 54.8% of the patients had a pathogenic variant in a clinically significant gene (BRCA1, BRCA2, PALB2, RAD51C, PMS2, CDKN2A, MLH1, MSH2, TP53, MSH6, APC, RAD51D, PTEN, RET, CDH1, MEN1, and VHL). Among the different types of pathogenic variants detected, a significant percentage (6.52%) represented copy number variation (CNV). With WES analysis, the following findings were detected: CTC1: c.880C>T, p.(Gln294*); MLH3: c.405del, p.(Asp136Metfs*2), PPM1D: c.1426_1430del, p.(Glu476Leufs*3), and SDHB: c.395A>G, p.(His132Arg).</p><p><strong>Conclusion: </strong>Comprehensive multigene genetic testing is necessary for appropriate clinical management of pathogenic variants' carriers. Additionally, the information obtained is important for determining the risk of malignancy development in family members of the examined individuals.</p>","PeriodicalId":9516,"journal":{"name":"Cancer Genomics & Proteomics","volume":"21 5","pages":"448-463"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363926/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Clinical and Genetic Landscape of Hereditary Cancer: Experience from a Single Clinical Diagnostic Laboratory.\",\"authors\":\"Nikolaos Tsoulos, Konstantinos Agiannitopoulos, Kevisa Potska, Anastasia Katseli, Christina Ntogka, Georgia Pepe, Dimitra Bouzarelou, Athanasios Papathanasiou, Dimitrios Grigoriadis, Georgios N Tsaousis, Helen Gogas, Theodore Troupis, Konstantinos Papazisis, Ioannis Natsiopoulos, Vassileios Venizelos, Kyriakos Amarantidis, Stylianos Giassas, Christos Papadimitriou, Elena Fountzilas, Maroulio Stathoulopoulou, Anna Koumarianou, Grigorios Xepapadakis, Alexandru Blidaru, Daniela Zob, Oana Voinea, Mustafa Özdoğan, Mahmut Çerkez Ergören, Alinta Hegmane, Eirini Papadopoulou, George Nasioulas, Christos Markopoulos\",\"doi\":\"10.21873/cgp.20463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aim: </strong>The application of next-generation sequencing (NGS) technology in the genetic investigation of hereditary cancer is important for clinical surveillance, therapeutic approach, and reducing the risk of developing new malignancies. The aim of the study was to explore genetic predisposition in individuals referred for hereditary cancer.</p><p><strong>Materials and methods: </strong>A total of 8,261 individuals were referred for multigene genetic testing, during the period 2020-2023, in the laboratory, and underwent multigene genetic testing using NGS. Among the examined individuals, 56.17% were diagnosed with breast cancer, 6.77% with ovarian cancer, 2.88% with colorectal cancer, 1.91% with prostate cancer, 6.43% were healthy with a significant family history of cancer, while 3.06% had a different type of cancer and 0.21% had not provided any information. Additionally, in 85 women with breast cancer we performed whole exome sequencing analysis.</p><p><strong>Results: </strong>20% of the examined individuals carried a pathogenic variant. Specifically, 54.8% of the patients had a pathogenic variant in a clinically significant gene (BRCA1, BRCA2, PALB2, RAD51C, PMS2, CDKN2A, MLH1, MSH2, TP53, MSH6, APC, RAD51D, PTEN, RET, CDH1, MEN1, and VHL). Among the different types of pathogenic variants detected, a significant percentage (6.52%) represented copy number variation (CNV). With WES analysis, the following findings were detected: CTC1: c.880C>T, p.(Gln294*); MLH3: c.405del, p.(Asp136Metfs*2), PPM1D: c.1426_1430del, p.(Glu476Leufs*3), and SDHB: c.395A>G, p.(His132Arg).</p><p><strong>Conclusion: </strong>Comprehensive multigene genetic testing is necessary for appropriate clinical management of pathogenic variants' carriers. Additionally, the information obtained is important for determining the risk of malignancy development in family members of the examined individuals.</p>\",\"PeriodicalId\":9516,\"journal\":{\"name\":\"Cancer Genomics & Proteomics\",\"volume\":\"21 5\",\"pages\":\"448-463\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363926/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Genomics & Proteomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21873/cgp.20463\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genomics & Proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/cgp.20463","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The Clinical and Genetic Landscape of Hereditary Cancer: Experience from a Single Clinical Diagnostic Laboratory.
Background/aim: The application of next-generation sequencing (NGS) technology in the genetic investigation of hereditary cancer is important for clinical surveillance, therapeutic approach, and reducing the risk of developing new malignancies. The aim of the study was to explore genetic predisposition in individuals referred for hereditary cancer.
Materials and methods: A total of 8,261 individuals were referred for multigene genetic testing, during the period 2020-2023, in the laboratory, and underwent multigene genetic testing using NGS. Among the examined individuals, 56.17% were diagnosed with breast cancer, 6.77% with ovarian cancer, 2.88% with colorectal cancer, 1.91% with prostate cancer, 6.43% were healthy with a significant family history of cancer, while 3.06% had a different type of cancer and 0.21% had not provided any information. Additionally, in 85 women with breast cancer we performed whole exome sequencing analysis.
Results: 20% of the examined individuals carried a pathogenic variant. Specifically, 54.8% of the patients had a pathogenic variant in a clinically significant gene (BRCA1, BRCA2, PALB2, RAD51C, PMS2, CDKN2A, MLH1, MSH2, TP53, MSH6, APC, RAD51D, PTEN, RET, CDH1, MEN1, and VHL). Among the different types of pathogenic variants detected, a significant percentage (6.52%) represented copy number variation (CNV). With WES analysis, the following findings were detected: CTC1: c.880C>T, p.(Gln294*); MLH3: c.405del, p.(Asp136Metfs*2), PPM1D: c.1426_1430del, p.(Glu476Leufs*3), and SDHB: c.395A>G, p.(His132Arg).
Conclusion: Comprehensive multigene genetic testing is necessary for appropriate clinical management of pathogenic variants' carriers. Additionally, the information obtained is important for determining the risk of malignancy development in family members of the examined individuals.
期刊介绍:
Cancer Genomics & Proteomics (CGP) is an international peer-reviewed journal designed to publish rapidly high quality articles and reviews on the application of genomic and proteomic technology to basic, experimental and clinical cancer research. In this site you may find information concerning the editorial board, editorial policy, issue contents, subscriptions, submission of manuscripts and advertising. The first issue of CGP circulated in January 2004.
Cancer Genomics & Proteomics is a journal of the International Institute of Anticancer Research. From January 2013 CGP is converted to an online-only open access journal.
Cancer Genomics & Proteomics supports (a) the aims and the research projects of the INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH and (b) the organization of the INTERNATIONAL CONFERENCES OF ANTICANCER RESEARCH.