Yili Shao, Xiaojun Li, Wang Zhou, Shaojie Qian, Ligang Wang, Xiangming Fang
{"title":"KLF15通过PPARδ减轻脂多糖诱导的肾小管上皮细胞凋亡和炎症反应。","authors":"Yili Shao, Xiaojun Li, Wang Zhou, Shaojie Qian, Ligang Wang, Xiangming Fang","doi":"10.1097/SHK.0000000000002431","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Background: The kidney is the most commonly affected organ in sepsis patients, and Krüppel-like transcription factor 15 (KLF15) has a kidney-protective effect and is highly enriched in the kidneys. This study aims to explore the role of KLF15 in sepsis-related acute kidney injury. Methods: A septic injury model in HK2 cells was established through the administration of lipopolysaccharide (LPS), followed by the transfection of an overexpression plasmid for KLF15. Cell viability was assessed using Cell Counting Kit-8 assay, and apoptosis was measured via flow cytometry. The levels of inflammatory cytokines were detected using ELISA, and western blot assay was employed to assess the expression of KLF15, PPARδ, as well as inflammatory and apoptosis-related proteins. The interaction between KLF15 and PPARδ was confirmed through the utilization of online databases and immunoprecipitation experiments. The mechanism was further validated using PPARδ agonists and small interfering RNA. Results: LPS-induced HK2 cells showed downregulated expression of KLF15 and PPARδ, along with decreased viability, accompanied by increased levels of apoptosis, TNFα, IL-1β, and IL-6. Additionally, LPS upregulated the expression of Bax, cytoplasmic cytochrome C [Cytc (cyt)], Cox-2, and p-NF-κB-p65 in HK2 cells, while simultaneously downregulating the expression of Bcl2 and mitochondrial cytochrome c [Cytc (mit)]. immunoprecipitation experiment revealed a possible interaction between KLF15 and PPARδ in HK2 cells. Ov-KLF15, Ov-PPARδ, or administration of PPARδ agonists effectively alleviated the aforementioned alterations induced by LPS. However, interference with PPARδ significantly attenuated the protective effect of Ov-KLF15 on HK2 cells. Conclusion: KLF15 attenuates LPS-induced apoptosis and inflammatory responses in HK2 cells via PPARδ.</p>","PeriodicalId":21667,"journal":{"name":"SHOCK","volume":" ","pages":"574-581"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KLF15 ATTENUATES LIPOPOLYSACCHARIDE-INDUCED APOPTOSIS AND INFLAMMATORY RESPONSE IN RENAL TUBULAR EPITHELIAL CELLS VIA PPARΔ.\",\"authors\":\"Yili Shao, Xiaojun Li, Wang Zhou, Shaojie Qian, Ligang Wang, Xiangming Fang\",\"doi\":\"10.1097/SHK.0000000000002431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Background: The kidney is the most commonly affected organ in sepsis patients, and Krüppel-like transcription factor 15 (KLF15) has a kidney-protective effect and is highly enriched in the kidneys. This study aims to explore the role of KLF15 in sepsis-related acute kidney injury. Methods: A septic injury model in HK2 cells was established through the administration of lipopolysaccharide (LPS), followed by the transfection of an overexpression plasmid for KLF15. Cell viability was assessed using Cell Counting Kit-8 assay, and apoptosis was measured via flow cytometry. The levels of inflammatory cytokines were detected using ELISA, and western blot assay was employed to assess the expression of KLF15, PPARδ, as well as inflammatory and apoptosis-related proteins. The interaction between KLF15 and PPARδ was confirmed through the utilization of online databases and immunoprecipitation experiments. The mechanism was further validated using PPARδ agonists and small interfering RNA. Results: LPS-induced HK2 cells showed downregulated expression of KLF15 and PPARδ, along with decreased viability, accompanied by increased levels of apoptosis, TNFα, IL-1β, and IL-6. Additionally, LPS upregulated the expression of Bax, cytoplasmic cytochrome C [Cytc (cyt)], Cox-2, and p-NF-κB-p65 in HK2 cells, while simultaneously downregulating the expression of Bcl2 and mitochondrial cytochrome c [Cytc (mit)]. immunoprecipitation experiment revealed a possible interaction between KLF15 and PPARδ in HK2 cells. Ov-KLF15, Ov-PPARδ, or administration of PPARδ agonists effectively alleviated the aforementioned alterations induced by LPS. However, interference with PPARδ significantly attenuated the protective effect of Ov-KLF15 on HK2 cells. Conclusion: KLF15 attenuates LPS-induced apoptosis and inflammatory responses in HK2 cells via PPARδ.</p>\",\"PeriodicalId\":21667,\"journal\":{\"name\":\"SHOCK\",\"volume\":\" \",\"pages\":\"574-581\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SHOCK\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/SHK.0000000000002431\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHOCK","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SHK.0000000000002431","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
KLF15 ATTENUATES LIPOPOLYSACCHARIDE-INDUCED APOPTOSIS AND INFLAMMATORY RESPONSE IN RENAL TUBULAR EPITHELIAL CELLS VIA PPARΔ.
Abstract: Background: The kidney is the most commonly affected organ in sepsis patients, and Krüppel-like transcription factor 15 (KLF15) has a kidney-protective effect and is highly enriched in the kidneys. This study aims to explore the role of KLF15 in sepsis-related acute kidney injury. Methods: A septic injury model in HK2 cells was established through the administration of lipopolysaccharide (LPS), followed by the transfection of an overexpression plasmid for KLF15. Cell viability was assessed using Cell Counting Kit-8 assay, and apoptosis was measured via flow cytometry. The levels of inflammatory cytokines were detected using ELISA, and western blot assay was employed to assess the expression of KLF15, PPARδ, as well as inflammatory and apoptosis-related proteins. The interaction between KLF15 and PPARδ was confirmed through the utilization of online databases and immunoprecipitation experiments. The mechanism was further validated using PPARδ agonists and small interfering RNA. Results: LPS-induced HK2 cells showed downregulated expression of KLF15 and PPARδ, along with decreased viability, accompanied by increased levels of apoptosis, TNFα, IL-1β, and IL-6. Additionally, LPS upregulated the expression of Bax, cytoplasmic cytochrome C [Cytc (cyt)], Cox-2, and p-NF-κB-p65 in HK2 cells, while simultaneously downregulating the expression of Bcl2 and mitochondrial cytochrome c [Cytc (mit)]. immunoprecipitation experiment revealed a possible interaction between KLF15 and PPARδ in HK2 cells. Ov-KLF15, Ov-PPARδ, or administration of PPARδ agonists effectively alleviated the aforementioned alterations induced by LPS. However, interference with PPARδ significantly attenuated the protective effect of Ov-KLF15 on HK2 cells. Conclusion: KLF15 attenuates LPS-induced apoptosis and inflammatory responses in HK2 cells via PPARδ.
期刊介绍:
SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches includes studies of novel therapeutic approaches, such as immunomodulation, gene therapy, nutrition, and others. The mission of the Journal is to foster and promote multidisciplinary studies, both experimental and clinical in nature, that critically examine the etiology, mechanisms and novel therapeutics of shock-related pathophysiological conditions. Its purpose is to excel as a vehicle for timely publication in the areas of basic and clinical studies of shock, trauma, sepsis, inflammation, ischemia, and related pathobiological states, with particular emphasis on the biologic mechanisms that determine the response to such injury. Making such information available will ultimately facilitate improved care of the traumatized or septic individual.