复杂系统的健康状态评估模型:权衡信念规则库的准确性和稳健性

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Soft Computing Pub Date : 2024-09-03 DOI:10.1016/j.asoc.2024.112189
{"title":"复杂系统的健康状态评估模型:权衡信念规则库的准确性和稳健性","authors":"","doi":"10.1016/j.asoc.2024.112189","DOIUrl":null,"url":null,"abstract":"<div><p>In complex system, health state assessment can determine the state of the system and identify potential system problems. However, due to the numerous uncertainties and variations present in complex systems, it is difficult to effectively construct assessment models. Belief rule base (BRB) can use data-driven and knowledge-driven methods to effectively address uncertain information, and is widely used for modeling health state assessments of complex systems. The primary modeling and optimization goals of BRB is currently at accuracy, ignoring the impact of robustness on complex systems, and the reliability of the model is reduced. Therefore, this article introduces a novel method to balance the accuracy and robustness of BRB models. This method enhances the performance of the BRB model in assessing complex system health and provides valuable guidance for engineering applications. Firstly, the guidelines for BRB modeling are systematically summarized to address the trade-off between accuracy and robustness. This provides essential guidance for constructing BRB models during the model-building process. Secondly, four feasible domain criteria are proposed to enhance the reliability of the BRB during the model optimization process. A modified multi-objective optimization algorithm is proposed based on the feasible domain criteria. Finally, in the case studies of aerospace relay and lithium-ion battery health assessments, the MSE of the proposed model for aerospace relay health assessment is 0.0015 with a Lipschitz constant of 6.73, while for lithium-ion battery health assessment, the MSE is 0.0013 with a Lipschitz constant of 24.17. The experimental results demonstrate that the proposed model has an advantage in terms of the trade-offs between both robustness and accuracy.</p></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Health state assessment model for complex systems: Trade-off accuracy and robustness in belief rule base\",\"authors\":\"\",\"doi\":\"10.1016/j.asoc.2024.112189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In complex system, health state assessment can determine the state of the system and identify potential system problems. However, due to the numerous uncertainties and variations present in complex systems, it is difficult to effectively construct assessment models. Belief rule base (BRB) can use data-driven and knowledge-driven methods to effectively address uncertain information, and is widely used for modeling health state assessments of complex systems. The primary modeling and optimization goals of BRB is currently at accuracy, ignoring the impact of robustness on complex systems, and the reliability of the model is reduced. Therefore, this article introduces a novel method to balance the accuracy and robustness of BRB models. This method enhances the performance of the BRB model in assessing complex system health and provides valuable guidance for engineering applications. Firstly, the guidelines for BRB modeling are systematically summarized to address the trade-off between accuracy and robustness. This provides essential guidance for constructing BRB models during the model-building process. Secondly, four feasible domain criteria are proposed to enhance the reliability of the BRB during the model optimization process. A modified multi-objective optimization algorithm is proposed based on the feasible domain criteria. Finally, in the case studies of aerospace relay and lithium-ion battery health assessments, the MSE of the proposed model for aerospace relay health assessment is 0.0015 with a Lipschitz constant of 6.73, while for lithium-ion battery health assessment, the MSE is 0.0013 with a Lipschitz constant of 24.17. The experimental results demonstrate that the proposed model has an advantage in terms of the trade-offs between both robustness and accuracy.</p></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494624009633\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624009633","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在复杂系统中,健康状态评估可以确定系统的状态并识别潜在的系统问题。然而,由于复杂系统中存在众多不确定性和变化,因此很难有效地构建评估模型。信念规则库(BRB)可以利用数据驱动和知识驱动的方法有效处理不确定信息,被广泛用于复杂系统健康状态评估建模。目前,信念规则库的主要建模和优化目标在于准确性,忽略了鲁棒性对复杂系统的影响,降低了模型的可靠性。因此,本文介绍了一种平衡 BRB 模型准确性和鲁棒性的新方法。该方法提高了 BRB 模型在评估复杂系统健康状况时的性能,为工程应用提供了有价值的指导。首先,本文系统地总结了 BRB 建模准则,以解决准确性和鲁棒性之间的权衡问题。这为在建模过程中构建 BRB 模型提供了重要指导。其次,在模型优化过程中,提出了四个可行的领域标准,以提高 BRB 的可靠性。基于可行域标准,提出了一种改进的多目标优化算法。最后,在航天继电器和锂离子电池健康评估的案例研究中,所提模型在航天继电器健康评估中的 MSE 为 0.0015,Lipschitz 常数为 6.73;在锂离子电池健康评估中,MSE 为 0.0013,Lipschitz 常数为 24.17。实验结果表明,所提出的模型在鲁棒性和准确性的权衡方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Health state assessment model for complex systems: Trade-off accuracy and robustness in belief rule base

In complex system, health state assessment can determine the state of the system and identify potential system problems. However, due to the numerous uncertainties and variations present in complex systems, it is difficult to effectively construct assessment models. Belief rule base (BRB) can use data-driven and knowledge-driven methods to effectively address uncertain information, and is widely used for modeling health state assessments of complex systems. The primary modeling and optimization goals of BRB is currently at accuracy, ignoring the impact of robustness on complex systems, and the reliability of the model is reduced. Therefore, this article introduces a novel method to balance the accuracy and robustness of BRB models. This method enhances the performance of the BRB model in assessing complex system health and provides valuable guidance for engineering applications. Firstly, the guidelines for BRB modeling are systematically summarized to address the trade-off between accuracy and robustness. This provides essential guidance for constructing BRB models during the model-building process. Secondly, four feasible domain criteria are proposed to enhance the reliability of the BRB during the model optimization process. A modified multi-objective optimization algorithm is proposed based on the feasible domain criteria. Finally, in the case studies of aerospace relay and lithium-ion battery health assessments, the MSE of the proposed model for aerospace relay health assessment is 0.0015 with a Lipschitz constant of 6.73, while for lithium-ion battery health assessment, the MSE is 0.0013 with a Lipschitz constant of 24.17. The experimental results demonstrate that the proposed model has an advantage in terms of the trade-offs between both robustness and accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
期刊最新文献
An adaptive genetic algorithm with neighborhood search for integrated O2O takeaway order assignment and delivery optimization by e-bikes with varied compartments LesionMix data enhancement and entropy minimization for semi-supervised lesion segmentation of lung cancer A preordonance-based decision tree method and its parallel implementation in the framework of Map-Reduce A personality-guided preference aggregator for ephemeral group recommendation A decomposition-based multi-objective evolutionary algorithm using infinitesimal method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1