{"title":"单轴压缩下有缺陷砂岩断裂的前兆识别和综合预警模型研究","authors":"Liang Zhang, Xiangyu Meng, Ruide Lei, Linsen Zhou, Jiankun Zhou","doi":"10.1111/ffe.14410","DOIUrl":null,"url":null,"abstract":"<p>To explore the precursory information and instability fracture of rocks, we conducted a series of uniaxial compression tests on flawed sandstone. An integrated warning modeling is developed to predict the fracture in flawed sandstone. The results show that both the peak strength and elastic modulus of flawed sandstone demonstrate an “inverted” Gaussian distribution relative to the ligament angle, reaching the minimum values at 60°. The elastic strain energy proportion shows a sharp drop-off, whereas the proportion of dissipative energy increases in steps. The coalescence modes of flawed sandstone change from a mixed tensile-shear failure approximately aligned with the axis to an oblique shear failure. An integrated warning model is developed by integrating a Multi-Output Classifier (MOC) and Grid optimization (GO). The integrated warning model has an accuracy of 97.95%. Additionally, the sensitivity of the model is recorded at 99.26%, confirming its effectiveness in predicting the likelihood of fracturing.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 10","pages":"3791-3812"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on precursory recognition and integrated warning modeling to fracture in flawed sandstone under uniaxial compression\",\"authors\":\"Liang Zhang, Xiangyu Meng, Ruide Lei, Linsen Zhou, Jiankun Zhou\",\"doi\":\"10.1111/ffe.14410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To explore the precursory information and instability fracture of rocks, we conducted a series of uniaxial compression tests on flawed sandstone. An integrated warning modeling is developed to predict the fracture in flawed sandstone. The results show that both the peak strength and elastic modulus of flawed sandstone demonstrate an “inverted” Gaussian distribution relative to the ligament angle, reaching the minimum values at 60°. The elastic strain energy proportion shows a sharp drop-off, whereas the proportion of dissipative energy increases in steps. The coalescence modes of flawed sandstone change from a mixed tensile-shear failure approximately aligned with the axis to an oblique shear failure. An integrated warning model is developed by integrating a Multi-Output Classifier (MOC) and Grid optimization (GO). The integrated warning model has an accuracy of 97.95%. Additionally, the sensitivity of the model is recorded at 99.26%, confirming its effectiveness in predicting the likelihood of fracturing.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"47 10\",\"pages\":\"3791-3812\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14410\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14410","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Study on precursory recognition and integrated warning modeling to fracture in flawed sandstone under uniaxial compression
To explore the precursory information and instability fracture of rocks, we conducted a series of uniaxial compression tests on flawed sandstone. An integrated warning modeling is developed to predict the fracture in flawed sandstone. The results show that both the peak strength and elastic modulus of flawed sandstone demonstrate an “inverted” Gaussian distribution relative to the ligament angle, reaching the minimum values at 60°. The elastic strain energy proportion shows a sharp drop-off, whereas the proportion of dissipative energy increases in steps. The coalescence modes of flawed sandstone change from a mixed tensile-shear failure approximately aligned with the axis to an oblique shear failure. An integrated warning model is developed by integrating a Multi-Output Classifier (MOC) and Grid optimization (GO). The integrated warning model has an accuracy of 97.95%. Additionally, the sensitivity of the model is recorded at 99.26%, confirming its effectiveness in predicting the likelihood of fracturing.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.