D. Vijaya Mitra, Kevin Jason, Karthik Parmeswaran, T. Uma Devi, Rameswar Sah
{"title":"采用磨矿后重力和磁力分离提高品位和回收率的可行性选矿研究","authors":"D. Vijaya Mitra, Kevin Jason, Karthik Parmeswaran, T. Uma Devi, Rameswar Sah","doi":"10.1007/s12666-024-03445-2","DOIUrl":null,"url":null,"abstract":"<p>The recovery of Fe from an oversized sample in a spiral classifier upgrades a 55% Fe to 59% Fe output in a size range (− 3 mm + 150 μm). The output was subjected to fine grinding making it suitable for pellet plant. The ground fine ore was subjected to 2 processing routes: gravity concentration followed by magnetic separation. The tailing after gravity separation was subjected to magnetic separation with varying Gauss. One set of Fe enrichment was achieved in the concentrate after gravity separation and in the mag part of magnetic separator. The overall concentrate was 61.38% Fe, 4.53% SiO<sub>2</sub>, and 2.97% Al<sub>2</sub>O<sub>3</sub>, with an yield of 83.45%. The Fe recovery was 86.27%. Alternately, fine ore was directly subjected to magnetic separation at 8000 Gauss, enriching the ore to 65.12%Fe with 48.15% yield which corresponds to 52.81% Fe. Thus, gravity concentration followed by magnetic separation gave higher grade, yield and Fe recovery.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"72 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasible Beneficiation Studies to Enrich Grade and Recovery by Adopting Grinding Followed by Gravity and Magnetic Separation\",\"authors\":\"D. Vijaya Mitra, Kevin Jason, Karthik Parmeswaran, T. Uma Devi, Rameswar Sah\",\"doi\":\"10.1007/s12666-024-03445-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The recovery of Fe from an oversized sample in a spiral classifier upgrades a 55% Fe to 59% Fe output in a size range (− 3 mm + 150 μm). The output was subjected to fine grinding making it suitable for pellet plant. The ground fine ore was subjected to 2 processing routes: gravity concentration followed by magnetic separation. The tailing after gravity separation was subjected to magnetic separation with varying Gauss. One set of Fe enrichment was achieved in the concentrate after gravity separation and in the mag part of magnetic separator. The overall concentrate was 61.38% Fe, 4.53% SiO<sub>2</sub>, and 2.97% Al<sub>2</sub>O<sub>3</sub>, with an yield of 83.45%. The Fe recovery was 86.27%. Alternately, fine ore was directly subjected to magnetic separation at 8000 Gauss, enriching the ore to 65.12%Fe with 48.15% yield which corresponds to 52.81% Fe. Thus, gravity concentration followed by magnetic separation gave higher grade, yield and Fe recovery.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":23224,\"journal\":{\"name\":\"Transactions of The Indian Institute of Metals\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Indian Institute of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12666-024-03445-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03445-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Feasible Beneficiation Studies to Enrich Grade and Recovery by Adopting Grinding Followed by Gravity and Magnetic Separation
The recovery of Fe from an oversized sample in a spiral classifier upgrades a 55% Fe to 59% Fe output in a size range (− 3 mm + 150 μm). The output was subjected to fine grinding making it suitable for pellet plant. The ground fine ore was subjected to 2 processing routes: gravity concentration followed by magnetic separation. The tailing after gravity separation was subjected to magnetic separation with varying Gauss. One set of Fe enrichment was achieved in the concentrate after gravity separation and in the mag part of magnetic separator. The overall concentrate was 61.38% Fe, 4.53% SiO2, and 2.97% Al2O3, with an yield of 83.45%. The Fe recovery was 86.27%. Alternately, fine ore was directly subjected to magnetic separation at 8000 Gauss, enriching the ore to 65.12%Fe with 48.15% yield which corresponds to 52.81% Fe. Thus, gravity concentration followed by magnetic separation gave higher grade, yield and Fe recovery.
期刊介绍:
Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering.
Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.