基于前馈-反馈混合控制的指向稳定机构主动隔振控制器设计

IF 2.3 3区 工程技术 Q2 ACOUSTICS Journal of Vibration and Control Pub Date : 2024-08-14 DOI:10.1177/10775463241271843
Anpeng Xu, Zhenbang Xu, Hui Zhang, Shuai He, Lintao Wang
{"title":"基于前馈-反馈混合控制的指向稳定机构主动隔振控制器设计","authors":"Anpeng Xu, Zhenbang Xu, Hui Zhang, Shuai He, Lintao Wang","doi":"10.1177/10775463241271843","DOIUrl":null,"url":null,"abstract":"The use of space technology and small space loads is increasingly common. To address this, a mechanism for isolation vibration in small optical load has been proposed. The mechanism includes a coarse and fine stage parallel pointing platform (CFPP). This paper investigates an active vibration isolation scheme for the novel pointing stabilization mechanism. The kinetic energy minimization principle is derived from the analysis of its working mechanism and dynamic feedforward characteristics. This principle is confirmed by the feedforward of the indeterminate degrees of freedom of the under-constrained mechanism. A hybrid control scheme of feedback and feedforward is developed based on the H<jats:sub>∞</jats:sub> algorithm and the optimal feedforward control algorithm. Simulation and experimentation have proven that the vibration isolation efficiency of more than 20 dB can be achieved in all three axis rotation directions. This meets the precision pointing requirements of small optical load effectively.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"14 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of active vibration isolation controller for pointing stabilization mechanism based on feedforward–feedback hybrid control\",\"authors\":\"Anpeng Xu, Zhenbang Xu, Hui Zhang, Shuai He, Lintao Wang\",\"doi\":\"10.1177/10775463241271843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of space technology and small space loads is increasingly common. To address this, a mechanism for isolation vibration in small optical load has been proposed. The mechanism includes a coarse and fine stage parallel pointing platform (CFPP). This paper investigates an active vibration isolation scheme for the novel pointing stabilization mechanism. The kinetic energy minimization principle is derived from the analysis of its working mechanism and dynamic feedforward characteristics. This principle is confirmed by the feedforward of the indeterminate degrees of freedom of the under-constrained mechanism. A hybrid control scheme of feedback and feedforward is developed based on the H<jats:sub>∞</jats:sub> algorithm and the optimal feedforward control algorithm. Simulation and experimentation have proven that the vibration isolation efficiency of more than 20 dB can be achieved in all three axis rotation directions. This meets the precision pointing requirements of small optical load effectively.\",\"PeriodicalId\":17511,\"journal\":{\"name\":\"Journal of Vibration and Control\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10775463241271843\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10775463241271843","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

空间技术和小型空间负载的使用越来越普遍。为此,我们提出了一种用于隔离小型光学负载振动的机制。该机制包括一个粗级和细级平行指向平台(CFPP)。本文研究了新型指向稳定机制的主动振动隔离方案。通过对其工作机制和动态前馈特性的分析,得出了动能最小化原理。这一原理通过对欠约束机构的不确定自由度的前馈得到了证实。基于 H∞ 算法和最优前馈控制算法,开发了一种反馈和前馈混合控制方案。仿真和实验证明,三轴旋转方向的隔振效率均可达到 20 dB 以上。这有效地满足了小型光学负载的精确指向要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of active vibration isolation controller for pointing stabilization mechanism based on feedforward–feedback hybrid control
The use of space technology and small space loads is increasingly common. To address this, a mechanism for isolation vibration in small optical load has been proposed. The mechanism includes a coarse and fine stage parallel pointing platform (CFPP). This paper investigates an active vibration isolation scheme for the novel pointing stabilization mechanism. The kinetic energy minimization principle is derived from the analysis of its working mechanism and dynamic feedforward characteristics. This principle is confirmed by the feedforward of the indeterminate degrees of freedom of the under-constrained mechanism. A hybrid control scheme of feedback and feedforward is developed based on the H algorithm and the optimal feedforward control algorithm. Simulation and experimentation have proven that the vibration isolation efficiency of more than 20 dB can be achieved in all three axis rotation directions. This meets the precision pointing requirements of small optical load effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Vibration and Control
Journal of Vibration and Control 工程技术-工程:机械
CiteScore
5.20
自引率
17.90%
发文量
336
审稿时长
6 months
期刊介绍: The Journal of Vibration and Control is a peer-reviewed journal of analytical, computational and experimental studies of vibration phenomena and their control. The scope encompasses all linear and nonlinear vibration phenomena and covers topics such as: vibration and control of structures and machinery, signal analysis, aeroelasticity, neural networks, structural control and acoustics, noise and noise control, waves in solids and fluids and shock waves.
期刊最新文献
Finite element formulation for free vibration of the functionally graded curved nonlocal nanobeam resting on nonlocal elastic foundation Multi-objective optimization of inerter-based building mass dampers A low-complexity highly accurate sound source localization algorithm based on sound sensor arrays Tailored for vehicle horn: A novel sound source capture method A novel optimal resonance band selection method for wheelset-bearing fault diagnosis based on tunable-Q wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1