基于混合优化神经网络的乘用车内部声音质量评估和预测

IF 2.3 3区 工程技术 Q2 ACOUSTICS Journal of Vibration and Control Pub Date : 2024-09-10 DOI:10.1177/10775463241282049
Kun Qian, Jing Tan, Zhenghua Shen, Ke Liu, Yanfu Wang, Jiying Duan, Xikang Du, Jian Zhao
{"title":"基于混合优化神经网络的乘用车内部声音质量评估和预测","authors":"Kun Qian, Jing Tan, Zhenghua Shen, Ke Liu, Yanfu Wang, Jiying Duan, Xikang Du, Jian Zhao","doi":"10.1177/10775463241282049","DOIUrl":null,"url":null,"abstract":"The interior noise of vehicles directly affects the comfort of the occupants, necessitating precise evaluation and control. Existing research has focused on constructing mappings between objective parameters and subjective perceptions of noise, where back propagation neural networks (BPNNs) are widely used due to their strong nonlinear mapping capabilities. However, the selection of initial weights and thresholds can affect the predictive accuracy of BPNN. This study developed a BPNN model optimized by an intelligent algorithm for predicting the level of subjective annoyance of passengers during the movement. Initially, objective parameters of interior noise were obtained through acoustic signal processing techniques, and five parameters were selected for studying subjective annoyance through correlation analysis and two-tailed tests. Meanwhile, the actual subjective ratings of passengers on interior noise were captured for subsequent training of the model and testing of the results. Finally, the established sparrow search algorithm (SSA) and genetic algorithm (GA) optimized BPNN were used to predict subjective evaluations. The predictive accuracy and efficiency of the model were significantly improved upon validation, providing a viable alternative to traditional passenger vehicle noise assessment experiments and valuable references for future noise control and optimization efforts. The experimental results are consistent with the view that the neural network model optimized with a mixture of intelligent algorithms is closer to the passenger’s subjective annoyance level having higher accuracy and efficiency.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"2 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interior sound quality evaluation and forecasting of passenger vehicles based on hybrid optimization neural networks\",\"authors\":\"Kun Qian, Jing Tan, Zhenghua Shen, Ke Liu, Yanfu Wang, Jiying Duan, Xikang Du, Jian Zhao\",\"doi\":\"10.1177/10775463241282049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interior noise of vehicles directly affects the comfort of the occupants, necessitating precise evaluation and control. Existing research has focused on constructing mappings between objective parameters and subjective perceptions of noise, where back propagation neural networks (BPNNs) are widely used due to their strong nonlinear mapping capabilities. However, the selection of initial weights and thresholds can affect the predictive accuracy of BPNN. This study developed a BPNN model optimized by an intelligent algorithm for predicting the level of subjective annoyance of passengers during the movement. Initially, objective parameters of interior noise were obtained through acoustic signal processing techniques, and five parameters were selected for studying subjective annoyance through correlation analysis and two-tailed tests. Meanwhile, the actual subjective ratings of passengers on interior noise were captured for subsequent training of the model and testing of the results. Finally, the established sparrow search algorithm (SSA) and genetic algorithm (GA) optimized BPNN were used to predict subjective evaluations. The predictive accuracy and efficiency of the model were significantly improved upon validation, providing a viable alternative to traditional passenger vehicle noise assessment experiments and valuable references for future noise control and optimization efforts. The experimental results are consistent with the view that the neural network model optimized with a mixture of intelligent algorithms is closer to the passenger’s subjective annoyance level having higher accuracy and efficiency.\",\"PeriodicalId\":17511,\"journal\":{\"name\":\"Journal of Vibration and Control\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10775463241282049\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10775463241282049","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

车内噪音直接影响乘员的舒适度,因此需要精确的评估和控制。现有的研究主要集中在构建客观参数与噪声主观感受之间的映射,其中反向传播神经网络(BPNN)因其强大的非线性映射能力而被广泛使用。然而,初始权重和阈值的选择会影响 BPNN 的预测精度。本研究开发了一个 BPNN 模型,通过智能算法进行优化,用于预测乘客在移动过程中的主观烦恼程度。最初,通过声学信号处理技术获得了车内噪声的客观参数,并通过相关分析和双尾检验选取了五个参数用于研究主观烦扰度。同时,采集乘客对车内噪声的实际主观评价,用于后续的模型训练和结果测试。最后,利用已建立的麻雀搜索算法(SSA)和遗传算法(GA)优化的 BPNN 来预测主观评价。经过验证,该模型的预测准确性和效率得到了显著提高,为传统的乘用车噪声评估实验提供了可行的替代方案,并为未来的噪声控制和优化工作提供了有价值的参考。实验结果表明,采用混合智能算法优化的神经网络模型更接近乘客的主观烦扰程度,具有更高的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interior sound quality evaluation and forecasting of passenger vehicles based on hybrid optimization neural networks
The interior noise of vehicles directly affects the comfort of the occupants, necessitating precise evaluation and control. Existing research has focused on constructing mappings between objective parameters and subjective perceptions of noise, where back propagation neural networks (BPNNs) are widely used due to their strong nonlinear mapping capabilities. However, the selection of initial weights and thresholds can affect the predictive accuracy of BPNN. This study developed a BPNN model optimized by an intelligent algorithm for predicting the level of subjective annoyance of passengers during the movement. Initially, objective parameters of interior noise were obtained through acoustic signal processing techniques, and five parameters were selected for studying subjective annoyance through correlation analysis and two-tailed tests. Meanwhile, the actual subjective ratings of passengers on interior noise were captured for subsequent training of the model and testing of the results. Finally, the established sparrow search algorithm (SSA) and genetic algorithm (GA) optimized BPNN were used to predict subjective evaluations. The predictive accuracy and efficiency of the model were significantly improved upon validation, providing a viable alternative to traditional passenger vehicle noise assessment experiments and valuable references for future noise control and optimization efforts. The experimental results are consistent with the view that the neural network model optimized with a mixture of intelligent algorithms is closer to the passenger’s subjective annoyance level having higher accuracy and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Vibration and Control
Journal of Vibration and Control 工程技术-工程:机械
CiteScore
5.20
自引率
17.90%
发文量
336
审稿时长
6 months
期刊介绍: The Journal of Vibration and Control is a peer-reviewed journal of analytical, computational and experimental studies of vibration phenomena and their control. The scope encompasses all linear and nonlinear vibration phenomena and covers topics such as: vibration and control of structures and machinery, signal analysis, aeroelasticity, neural networks, structural control and acoustics, noise and noise control, waves in solids and fluids and shock waves.
期刊最新文献
Finite element formulation for free vibration of the functionally graded curved nonlocal nanobeam resting on nonlocal elastic foundation Multi-objective optimization of inerter-based building mass dampers A low-complexity highly accurate sound source localization algorithm based on sound sensor arrays Tailored for vehicle horn: A novel sound source capture method A novel optimal resonance band selection method for wheelset-bearing fault diagnosis based on tunable-Q wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1