基于硅凝胶材料的爬行蜗牛型自调谐动态减震器的设计与实验

IF 2.3 3区 工程技术 Q2 ACOUSTICS Journal of Vibration and Control Pub Date : 2024-09-08 DOI:10.1177/10775463241280425
Ji-Hou Yang, De-Hai Chen, Xiao-Dong Yang
{"title":"基于硅凝胶材料的爬行蜗牛型自调谐动态减震器的设计与实验","authors":"Ji-Hou Yang, De-Hai Chen, Xiao-Dong Yang","doi":"10.1177/10775463241280425","DOIUrl":null,"url":null,"abstract":"Based on the different body configurations caused by varying head-to-tail distances exhibited by crawling inchworms during locomotion, this paper proposes a crawling-inchworm-type self-tuned dynamic vibration absorber (DVA) based on silicone gel materials for reducing low-frequency vibration. The proposed DVA was designed and developed by employing a magnetic hanging design with movable features, a span adjustment design with an embedded stepper motor, and a real-time control design using a microcontroller. First, a finite element simulation model was established to analyze the main structure of the self-tuned DVA using the finite element method. The frequency-shifting characteristics of the absorber were obtained by identifying the actuating modes that are sensitive to the hanging span. Second, based on the frequency-shifting characteristics of the self-tuned DVA, an absorber control system was designed by introducing a short-time Fourier transform and PID algorithm to achieve autonomous frequency adjustment of the DVA. Finally, the self-tuned absorption effects of the prototype self-tuned DVA were tested through a series of experiments, which confirmed its excellent self-tuned vibration absorption capability within the low-frequency range.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"7 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and experiment of a crawling-inchworm-type self-tuned dynamic vibration absorber based on silicone gel materials\",\"authors\":\"Ji-Hou Yang, De-Hai Chen, Xiao-Dong Yang\",\"doi\":\"10.1177/10775463241280425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the different body configurations caused by varying head-to-tail distances exhibited by crawling inchworms during locomotion, this paper proposes a crawling-inchworm-type self-tuned dynamic vibration absorber (DVA) based on silicone gel materials for reducing low-frequency vibration. The proposed DVA was designed and developed by employing a magnetic hanging design with movable features, a span adjustment design with an embedded stepper motor, and a real-time control design using a microcontroller. First, a finite element simulation model was established to analyze the main structure of the self-tuned DVA using the finite element method. The frequency-shifting characteristics of the absorber were obtained by identifying the actuating modes that are sensitive to the hanging span. Second, based on the frequency-shifting characteristics of the self-tuned DVA, an absorber control system was designed by introducing a short-time Fourier transform and PID algorithm to achieve autonomous frequency adjustment of the DVA. Finally, the self-tuned absorption effects of the prototype self-tuned DVA were tested through a series of experiments, which confirmed its excellent self-tuned vibration absorption capability within the low-frequency range.\",\"PeriodicalId\":17511,\"journal\":{\"name\":\"Journal of Vibration and Control\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10775463241280425\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10775463241280425","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

根据爬行尺蠖在运动过程中因头尾距离不同而产生的不同身体构造,本文提出了一种基于硅凝胶材料的爬行尺蠖型自调谐动态减震器(DVA),用于降低低频振动。所提出的 DVA 是通过采用具有可移动特征的磁悬挂设计、嵌入式步进电机的跨度调节设计和使用微控制器的实时控制设计来设计和开发的。首先,建立了有限元仿真模型,利用有限元方法分析了自调谐 DVA 的主体结构。通过确定对悬挂跨度敏感的执行模式,获得了吸收器的移频特性。其次,根据自调谐 DVA 的移频特性,通过引入短时傅里叶变换和 PID 算法设计了吸收器控制系统,以实现 DVA 的自主频率调节。最后,通过一系列实验测试了自调谐 DVA 原型的自调谐吸振效果,证实其在低频范围内具有出色的自调谐吸振能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and experiment of a crawling-inchworm-type self-tuned dynamic vibration absorber based on silicone gel materials
Based on the different body configurations caused by varying head-to-tail distances exhibited by crawling inchworms during locomotion, this paper proposes a crawling-inchworm-type self-tuned dynamic vibration absorber (DVA) based on silicone gel materials for reducing low-frequency vibration. The proposed DVA was designed and developed by employing a magnetic hanging design with movable features, a span adjustment design with an embedded stepper motor, and a real-time control design using a microcontroller. First, a finite element simulation model was established to analyze the main structure of the self-tuned DVA using the finite element method. The frequency-shifting characteristics of the absorber were obtained by identifying the actuating modes that are sensitive to the hanging span. Second, based on the frequency-shifting characteristics of the self-tuned DVA, an absorber control system was designed by introducing a short-time Fourier transform and PID algorithm to achieve autonomous frequency adjustment of the DVA. Finally, the self-tuned absorption effects of the prototype self-tuned DVA were tested through a series of experiments, which confirmed its excellent self-tuned vibration absorption capability within the low-frequency range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Vibration and Control
Journal of Vibration and Control 工程技术-工程:机械
CiteScore
5.20
自引率
17.90%
发文量
336
审稿时长
6 months
期刊介绍: The Journal of Vibration and Control is a peer-reviewed journal of analytical, computational and experimental studies of vibration phenomena and their control. The scope encompasses all linear and nonlinear vibration phenomena and covers topics such as: vibration and control of structures and machinery, signal analysis, aeroelasticity, neural networks, structural control and acoustics, noise and noise control, waves in solids and fluids and shock waves.
期刊最新文献
Finite element formulation for free vibration of the functionally graded curved nonlocal nanobeam resting on nonlocal elastic foundation Multi-objective optimization of inerter-based building mass dampers A low-complexity highly accurate sound source localization algorithm based on sound sensor arrays Tailored for vehicle horn: A novel sound source capture method A novel optimal resonance band selection method for wheelset-bearing fault diagnosis based on tunable-Q wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1