基于线粒体基因组的植食性和捕食性五步蛇科物种之间的差异

IF 2.3 2区 生物学 Q2 ECOLOGY Ecology and Evolution Pub Date : 2024-09-22 DOI:10.1002/ece3.70320
Xiaofei Ding, Siyuan Ge, Jing Chen, Long Qi, Jiufeng Wei, Hufang Zhang, Chi Hao, Qing Zhao
{"title":"基于线粒体基因组的植食性和捕食性五步蛇科物种之间的差异","authors":"Xiaofei Ding,&nbsp;Siyuan Ge,&nbsp;Jing Chen,&nbsp;Long Qi,&nbsp;Jiufeng Wei,&nbsp;Hufang Zhang,&nbsp;Chi Hao,&nbsp;Qing Zhao","doi":"10.1002/ece3.70320","DOIUrl":null,"url":null,"abstract":"<p>Pentatomidae includes many species of significant economic value as plant pests and biological control agents. The feeding habits of Pentatomidae are closely related to their energy metabolism and ecological adaptations. In this study, we sequenced the mitochondrial genomes of 12 Asopinae species using the next-generation sequencing to explore the effect of dietary changes on mitochondrial genome evolution. Notably, all sequences were double-stranded circular DNA molecules containing 37 genes and one control region. We then compared and analyzed the mitochondrial genome characteristics of phytophagous and predatory bugs. Notably, no significant difference was observed in the length of the mitochondrial genomes between the predatory and phytophagous bugs. However, the AT content was higher in the mitochondrial genomes of phytophagous bugs than that of predatory bugs. Moreover, phytophagous bugs prefer codon usage patterns ending in A/T compared with predatory bugs. The evolution rate of predatory bugs was lower than that of phytophagous bugs. The phylogenetic relationships across phytophagous bugs' lineages were largely consistent at depth nodes based on different datasets and tree-reconstructing methods, and strongly supported the monophyly of predatory bugs. Additionally, the estimated divergence times indicated that Pentatomidae explosively radiated in the Early Cretaceous. Subsequently, the subfamily Asopinae and the genus <i>Menida</i> diverged in the Late Cretaceous. Our research results provide data supporting for the evolutionary patterns and classification of Pentatomidae.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70320","citationCount":"0","resultStr":"{\"title\":\"Differences between phytophagous and predatory species in Pentatomidae based on the mitochondrial genome\",\"authors\":\"Xiaofei Ding,&nbsp;Siyuan Ge,&nbsp;Jing Chen,&nbsp;Long Qi,&nbsp;Jiufeng Wei,&nbsp;Hufang Zhang,&nbsp;Chi Hao,&nbsp;Qing Zhao\",\"doi\":\"10.1002/ece3.70320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pentatomidae includes many species of significant economic value as plant pests and biological control agents. The feeding habits of Pentatomidae are closely related to their energy metabolism and ecological adaptations. In this study, we sequenced the mitochondrial genomes of 12 Asopinae species using the next-generation sequencing to explore the effect of dietary changes on mitochondrial genome evolution. Notably, all sequences were double-stranded circular DNA molecules containing 37 genes and one control region. We then compared and analyzed the mitochondrial genome characteristics of phytophagous and predatory bugs. Notably, no significant difference was observed in the length of the mitochondrial genomes between the predatory and phytophagous bugs. However, the AT content was higher in the mitochondrial genomes of phytophagous bugs than that of predatory bugs. Moreover, phytophagous bugs prefer codon usage patterns ending in A/T compared with predatory bugs. The evolution rate of predatory bugs was lower than that of phytophagous bugs. The phylogenetic relationships across phytophagous bugs' lineages were largely consistent at depth nodes based on different datasets and tree-reconstructing methods, and strongly supported the monophyly of predatory bugs. Additionally, the estimated divergence times indicated that Pentatomidae explosively radiated in the Early Cretaceous. Subsequently, the subfamily Asopinae and the genus <i>Menida</i> diverged in the Late Cretaceous. Our research results provide data supporting for the evolutionary patterns and classification of Pentatomidae.</p>\",\"PeriodicalId\":11467,\"journal\":{\"name\":\"Ecology and Evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70320\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70320\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70320","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

五蠹科包括许多具有重要经济价值的物种,可作为植物害虫和生物控制剂。五蠹科昆虫的取食习性与其能量代谢和生态适应性密切相关。在本研究中,我们利用新一代测序技术对 12 种五步蛇科昆虫的线粒体基因组进行了测序,以探讨食性变化对线粒体基因组进化的影响。值得注意的是,所有序列均为双链环状DNA分子,包含37个基因和一个控制区。然后,我们比较分析了植食性和捕食性虫子的线粒体基因组特征。值得注意的是,在线粒体基因组的长度上,捕食性虫类和植食性虫类没有明显差异。不过,植食性昆虫线粒体基因组中的 AT 含量高于捕食性昆虫。此外,与捕食性虫子相比,植食性虫子更喜欢以A/T结尾的密码子使用模式。捕食性虫类的进化速度低于植食性虫类。根据不同的数据集和树状结构重建方法,植食性蝽各系在深度节点上的系统发生关系基本一致,有力地支持了捕食性蝽的单系性。此外,估计的分化时间表明,五节虫科在早白垩世出现了爆炸性的辐射。随后,桡足亚科(Asopinae)和Menida属(Menida)在晚白垩世分化。我们的研究结果为五蠹科的演化模式和分类提供了数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differences between phytophagous and predatory species in Pentatomidae based on the mitochondrial genome

Pentatomidae includes many species of significant economic value as plant pests and biological control agents. The feeding habits of Pentatomidae are closely related to their energy metabolism and ecological adaptations. In this study, we sequenced the mitochondrial genomes of 12 Asopinae species using the next-generation sequencing to explore the effect of dietary changes on mitochondrial genome evolution. Notably, all sequences were double-stranded circular DNA molecules containing 37 genes and one control region. We then compared and analyzed the mitochondrial genome characteristics of phytophagous and predatory bugs. Notably, no significant difference was observed in the length of the mitochondrial genomes between the predatory and phytophagous bugs. However, the AT content was higher in the mitochondrial genomes of phytophagous bugs than that of predatory bugs. Moreover, phytophagous bugs prefer codon usage patterns ending in A/T compared with predatory bugs. The evolution rate of predatory bugs was lower than that of phytophagous bugs. The phylogenetic relationships across phytophagous bugs' lineages were largely consistent at depth nodes based on different datasets and tree-reconstructing methods, and strongly supported the monophyly of predatory bugs. Additionally, the estimated divergence times indicated that Pentatomidae explosively radiated in the Early Cretaceous. Subsequently, the subfamily Asopinae and the genus Menida diverged in the Late Cretaceous. Our research results provide data supporting for the evolutionary patterns and classification of Pentatomidae.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
3.80%
发文量
1027
审稿时长
3-6 weeks
期刊介绍: Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment. Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.
期刊最新文献
Issue Information What's on the menu? A novel molecular gut content analysis to investigate the feeding behavior of phytophagous insects A non-invasive measure of bone growth in mammals: Validating urinary CTX-I as a bone resorption marker through long-bone growth velocity in bonobos Correction to Comparative analysis of the gut microbiome of ungulate species from Qinghai–Xizang plateau Differential use of nest materials and niche space among avian species within a single ecological community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1