通过酶挖掘揭开生物模拟二氧化碳捕获的神秘面纱:发现一种热稳定性和碱稳定性极高的碳酸酐酶。

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-09-23 DOI:10.1021/acs.est.4c04291
Konstantinos Rigkos, Georgios Filis, Io Antonopoulou, Ayanne de Oliveira Maciel, Pavlos Saridis, Dimitra Zarafeta, Georgios Skretas
{"title":"通过酶挖掘揭开生物模拟二氧化碳捕获的神秘面纱:发现一种热稳定性和碱稳定性极高的碳酸酐酶。","authors":"Konstantinos Rigkos, Georgios Filis, Io Antonopoulou, Ayanne de Oliveira Maciel, Pavlos Saridis, Dimitra Zarafeta, Georgios Skretas","doi":"10.1021/acs.est.4c04291","DOIUrl":null,"url":null,"abstract":"<p><p>Taking immediate action to combat the urgent threat of CO<sub>2</sub>-driven global warming is crucial for ensuring a habitable planet. Decarbonizing the industrial sector requires implementing sustainable carbon-capture technologies, such as biomimetic hot potassium carbonate capture (BioHPC). BioHPC is superior to traditional amine-based strategies due to its eco-friendly nature. This innovative technology relies on robust carbonic anhydrases (CAs), enzymes that accelerate CO<sub>2</sub> hydration and endure harsh industrial conditions like high temperature and alkalinity. Thus, the discovery of highly stable CAs is crucial for the BioHPC technology advancement. Through high-throughput bioinformatics analysis, we identified a highly thermo- and alkali-stable CA, termed CA-KR1, originating from a metagenomic sample collected at a hot spring in Kirishima, Japan. CA-KR1 demonstrates remarkable stability at high temperatures and pH, with a half-life of 24 h at 80 °C and retains activity and solubility even after 30 d in a 20% (w/v) K<sub>2</sub>CO<sub>3</sub>/pH 11.5 solution─a standard medium for HPC. In pressurized batch reactions, CA-KR1 enhanced CO<sub>2</sub> absorption by >90% at 90 °C, 20% K<sub>2</sub>CO<sub>3</sub>, and 7 bar. To our knowledge, CA-KR1 constitutes the most resilient CA biocatalyst for efficient CO<sub>2</sub> capture under HPC-relevant conditions, reported to date. CA-KR1 integration into industrial settings holds great promise in promoting efficient BioHPC, a potentially game-changing development for enhancing carbon-capture capacity toward industrial decarbonization.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic CO<sub>2</sub> Capture Unlocked through Enzyme Mining: Discovery of a Highly Thermo- and Alkali-Stable Carbonic Anhydrase.\",\"authors\":\"Konstantinos Rigkos, Georgios Filis, Io Antonopoulou, Ayanne de Oliveira Maciel, Pavlos Saridis, Dimitra Zarafeta, Georgios Skretas\",\"doi\":\"10.1021/acs.est.4c04291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Taking immediate action to combat the urgent threat of CO<sub>2</sub>-driven global warming is crucial for ensuring a habitable planet. Decarbonizing the industrial sector requires implementing sustainable carbon-capture technologies, such as biomimetic hot potassium carbonate capture (BioHPC). BioHPC is superior to traditional amine-based strategies due to its eco-friendly nature. This innovative technology relies on robust carbonic anhydrases (CAs), enzymes that accelerate CO<sub>2</sub> hydration and endure harsh industrial conditions like high temperature and alkalinity. Thus, the discovery of highly stable CAs is crucial for the BioHPC technology advancement. Through high-throughput bioinformatics analysis, we identified a highly thermo- and alkali-stable CA, termed CA-KR1, originating from a metagenomic sample collected at a hot spring in Kirishima, Japan. CA-KR1 demonstrates remarkable stability at high temperatures and pH, with a half-life of 24 h at 80 °C and retains activity and solubility even after 30 d in a 20% (w/v) K<sub>2</sub>CO<sub>3</sub>/pH 11.5 solution─a standard medium for HPC. In pressurized batch reactions, CA-KR1 enhanced CO<sub>2</sub> absorption by >90% at 90 °C, 20% K<sub>2</sub>CO<sub>3</sub>, and 7 bar. To our knowledge, CA-KR1 constitutes the most resilient CA biocatalyst for efficient CO<sub>2</sub> capture under HPC-relevant conditions, reported to date. CA-KR1 integration into industrial settings holds great promise in promoting efficient BioHPC, a potentially game-changing development for enhancing carbon-capture capacity toward industrial decarbonization.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c04291\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c04291","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

立即采取行动应对二氧化碳导致的全球变暖这一紧迫威胁,对于确保地球适宜居住至关重要。要实现工业领域的去碳化,就必须采用可持续的碳捕集技术,例如仿生热碳酸钾捕集技术(BioHPC)。生物热碳酸钾捕集技术因其生态友好的特性而优于传统的胺捕集技术。这种创新技术依赖于强大的碳酸酐酶(CAs),这种酶能加速二氧化碳水合,并能承受高温和碱度等恶劣的工业条件。因此,发现高度稳定的 CAs 对于 BioHPC 技术的发展至关重要。通过高通量生物信息学分析,我们从日本雾岛温泉采集的元基因组样本中发现了一种具有高度热稳定性和碱稳定性的 CA,称为 CA-KR1。CA-KR1 在高温和 pH 条件下表现出显著的稳定性,在 80 °C 下的半衰期为 24 小时,在 20% (w/v) K2CO3/pH 11.5 溶液(HPC 的标准介质)中 30 天后仍能保持活性和溶解度。在加压批量反应中,CA-KR1 在 90 °C、20% K2CO3 和 7 巴的条件下可提高二氧化碳吸收率大于 90%。据我们所知,CA-KR1 是迄今为止报道的在 HPC 相关条件下高效捕获二氧化碳的最有弹性的 CA 生物催化剂。将 CA-KR1 集成到工业环境中有望促进高效的生物高能碳捕集(BioHPC),这是一种可能改变游戏规则的发展,可提高碳捕集能力,实现工业脱碳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biomimetic CO2 Capture Unlocked through Enzyme Mining: Discovery of a Highly Thermo- and Alkali-Stable Carbonic Anhydrase.

Taking immediate action to combat the urgent threat of CO2-driven global warming is crucial for ensuring a habitable planet. Decarbonizing the industrial sector requires implementing sustainable carbon-capture technologies, such as biomimetic hot potassium carbonate capture (BioHPC). BioHPC is superior to traditional amine-based strategies due to its eco-friendly nature. This innovative technology relies on robust carbonic anhydrases (CAs), enzymes that accelerate CO2 hydration and endure harsh industrial conditions like high temperature and alkalinity. Thus, the discovery of highly stable CAs is crucial for the BioHPC technology advancement. Through high-throughput bioinformatics analysis, we identified a highly thermo- and alkali-stable CA, termed CA-KR1, originating from a metagenomic sample collected at a hot spring in Kirishima, Japan. CA-KR1 demonstrates remarkable stability at high temperatures and pH, with a half-life of 24 h at 80 °C and retains activity and solubility even after 30 d in a 20% (w/v) K2CO3/pH 11.5 solution─a standard medium for HPC. In pressurized batch reactions, CA-KR1 enhanced CO2 absorption by >90% at 90 °C, 20% K2CO3, and 7 bar. To our knowledge, CA-KR1 constitutes the most resilient CA biocatalyst for efficient CO2 capture under HPC-relevant conditions, reported to date. CA-KR1 integration into industrial settings holds great promise in promoting efficient BioHPC, a potentially game-changing development for enhancing carbon-capture capacity toward industrial decarbonization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Advancing Breathomics through Accurate Discrimination of Endogenous from Exogenous Volatiles in Breath Mapping Microplastic Movement: A Phase Diagram to Predict Nonbuoyant Microplastic Modes of Transport at the Particle Scale Resolving Atmospheric Oxygenated Organic Molecules in Urban Beijing Using Online Ultrahigh-Resolution Chemical Ionization Mass Spectrometry Iron Nanoparticles-Confined Graphene Oxide Membranes Coupled with Sulfite-Based Advanced Reduction Processes for Highly Efficient and Stable Removal of Bromate Proton vs Electron: The Dual Role of Redox-Inactive Metal Ions in Permanganate Oxidation Kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1