Muchen Zhang , Siyuan Yang , Yongqing Liu , Zhiyu Zou , Yan Zhang , Yunrui Tian , Rong Zhang , Dejun Liu , Congming Wu , Jianzhong Shen , Huangwei Song , Yang Wang
{"title":"抗癌剂 5-氟尿嘧啶可逆转耐碳青霉烯类革兰氏阴性病原体对美罗培南的耐药性。","authors":"Muchen Zhang , Siyuan Yang , Yongqing Liu , Zhiyu Zou , Yan Zhang , Yunrui Tian , Rong Zhang , Dejun Liu , Congming Wu , Jianzhong Shen , Huangwei Song , Yang Wang","doi":"10.1016/j.ijantimicag.2024.107337","DOIUrl":null,"url":null,"abstract":"<div><div>The global increasing incidence of clinical infections caused by carbapenem-resistant Gram-negative pathogens requires urgent and effective treatment strategies. Antibiotic adjuvants represent a promising approach to enhance the efficacy of meropenem against carbapenem-resistant bacteria. This study shows that the anticancer agent 5-fluorouracil (5-FU, 50 µM) significantly reduced the minimum inhibitory concentration of meropenem against <em>bla</em><sub>NDM-5</sub> positive <em>Escherichia coli</em> by 32-fold through cell-based high-throughput screening. Further pharmacological studies indicated that 5-FU exhibited potentiation effects on carbapenem antibiotics against 42 Gram-negative bacteria producing either metallo-β-lactamases (MBLs), such as NDM and IMP, or serine β-lactamases (Ser-BLs), like KPC and OXA. These bacteria included <em>E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa</em> and <em>Acinetobacter spp.</em>, 32 of which were obtained from human clinical samples. Mechanistic investigations revealed that 5-FU inhibited the transcription and expression of the <em>bla</em><sub>NDM-5</sub> gene. In addition, 5-FU combined with meropenem enhanced bacterial metabolism, and stimulated the production of reactive oxygen species (ROS), thereby rendering bacteria more susceptible to meropenem. In a mouse systemic infection model, 5-FU combined with meropenem reduced bacterial loads and effectively elevated the survival rate of 83.3%, compared with 16.7% with meropenem monotherapy. Collectively, these findings indicate the potential of 5-FU as a novel meropenem adjuvant to improve treatment outcomes against infections caused by carbapenem-resistant bacteria.</div></div>","PeriodicalId":13818,"journal":{"name":"International Journal of Antimicrobial Agents","volume":"64 5","pages":"Article 107337"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anticancer agent 5-fluorouracil reverses meropenem resistance in carbapenem-resistant Gram-negative pathogens\",\"authors\":\"Muchen Zhang , Siyuan Yang , Yongqing Liu , Zhiyu Zou , Yan Zhang , Yunrui Tian , Rong Zhang , Dejun Liu , Congming Wu , Jianzhong Shen , Huangwei Song , Yang Wang\",\"doi\":\"10.1016/j.ijantimicag.2024.107337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The global increasing incidence of clinical infections caused by carbapenem-resistant Gram-negative pathogens requires urgent and effective treatment strategies. Antibiotic adjuvants represent a promising approach to enhance the efficacy of meropenem against carbapenem-resistant bacteria. This study shows that the anticancer agent 5-fluorouracil (5-FU, 50 µM) significantly reduced the minimum inhibitory concentration of meropenem against <em>bla</em><sub>NDM-5</sub> positive <em>Escherichia coli</em> by 32-fold through cell-based high-throughput screening. Further pharmacological studies indicated that 5-FU exhibited potentiation effects on carbapenem antibiotics against 42 Gram-negative bacteria producing either metallo-β-lactamases (MBLs), such as NDM and IMP, or serine β-lactamases (Ser-BLs), like KPC and OXA. These bacteria included <em>E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa</em> and <em>Acinetobacter spp.</em>, 32 of which were obtained from human clinical samples. Mechanistic investigations revealed that 5-FU inhibited the transcription and expression of the <em>bla</em><sub>NDM-5</sub> gene. In addition, 5-FU combined with meropenem enhanced bacterial metabolism, and stimulated the production of reactive oxygen species (ROS), thereby rendering bacteria more susceptible to meropenem. In a mouse systemic infection model, 5-FU combined with meropenem reduced bacterial loads and effectively elevated the survival rate of 83.3%, compared with 16.7% with meropenem monotherapy. Collectively, these findings indicate the potential of 5-FU as a novel meropenem adjuvant to improve treatment outcomes against infections caused by carbapenem-resistant bacteria.</div></div>\",\"PeriodicalId\":13818,\"journal\":{\"name\":\"International Journal of Antimicrobial Agents\",\"volume\":\"64 5\",\"pages\":\"Article 107337\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antimicrobial Agents\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092485792400253X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antimicrobial Agents","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092485792400253X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Anticancer agent 5-fluorouracil reverses meropenem resistance in carbapenem-resistant Gram-negative pathogens
The global increasing incidence of clinical infections caused by carbapenem-resistant Gram-negative pathogens requires urgent and effective treatment strategies. Antibiotic adjuvants represent a promising approach to enhance the efficacy of meropenem against carbapenem-resistant bacteria. This study shows that the anticancer agent 5-fluorouracil (5-FU, 50 µM) significantly reduced the minimum inhibitory concentration of meropenem against blaNDM-5 positive Escherichia coli by 32-fold through cell-based high-throughput screening. Further pharmacological studies indicated that 5-FU exhibited potentiation effects on carbapenem antibiotics against 42 Gram-negative bacteria producing either metallo-β-lactamases (MBLs), such as NDM and IMP, or serine β-lactamases (Ser-BLs), like KPC and OXA. These bacteria included E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp., 32 of which were obtained from human clinical samples. Mechanistic investigations revealed that 5-FU inhibited the transcription and expression of the blaNDM-5 gene. In addition, 5-FU combined with meropenem enhanced bacterial metabolism, and stimulated the production of reactive oxygen species (ROS), thereby rendering bacteria more susceptible to meropenem. In a mouse systemic infection model, 5-FU combined with meropenem reduced bacterial loads and effectively elevated the survival rate of 83.3%, compared with 16.7% with meropenem monotherapy. Collectively, these findings indicate the potential of 5-FU as a novel meropenem adjuvant to improve treatment outcomes against infections caused by carbapenem-resistant bacteria.
期刊介绍:
The International Journal of Antimicrobial Agents is a peer-reviewed publication offering comprehensive and current reference information on the physical, pharmacological, in vitro, and clinical properties of individual antimicrobial agents, covering antiviral, antiparasitic, antibacterial, and antifungal agents. The journal not only communicates new trends and developments through authoritative review articles but also addresses the critical issue of antimicrobial resistance, both in hospital and community settings. Published content includes solicited reviews by leading experts and high-quality original research papers in the specified fields.