基于分根系统和转录组分析鉴定狐尾黍(Setaria italica)根中的系统氮信号转导。

IF 5.3 2区 生物学 Q1 PLANT SCIENCES Plant Cell Reports Pub Date : 2024-09-28 DOI:10.1007/s00299-024-03338-0
Xin-Li Yao, Yu-Ze Wang, Hui-Xin Meng, Ming-Hua Zhang, Xuan Zhou, Xue-Ting Kang, Shuqi Dong, Xiangyang Yuan, Xiaorui Li, Lulu Gao, Guanghui Yang, Xiaoqian Chu, Jia-Gang Wang
{"title":"基于分根系统和转录组分析鉴定狐尾黍(Setaria italica)根中的系统氮信号转导。","authors":"Xin-Li Yao, Yu-Ze Wang, Hui-Xin Meng, Ming-Hua Zhang, Xuan Zhou, Xue-Ting Kang, Shuqi Dong, Xiangyang Yuan, Xiaorui Li, Lulu Gao, Guanghui Yang, Xiaoqian Chu, Jia-Gang Wang","doi":"10.1007/s00299-024-03338-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>The study established split-root system (SRS) in foxtail millet, and identified the molecular regulatory mechanisms and metabolic pathways related to systemic nitrogen signaling based on this system and transcriptome analysis. The growth of crops is primarily constrained by the availability of nitrogen (N), an essential nutrient. Foxtail millet (Setaria italica L.) is a significant orphan crop known for its strong tolerance to barren conditions. Despite this, the signaling pathway of nitrogen in foxtail millet remains largely unexplored. Identifying the candidate genes responsible for nitrogen response in foxtail millet is crucial for enhancing its agricultural productivity. This study utilized the split-root system (SRS) in foxtail millet to uncover genes associated with Systemic Nitrogen Signaling (SNS). Transcriptome analysis of the SRS revealed 2158 differentially expressed genes (DEGs) implicated in SNS, including those involved in cytokinin synthesis, transcription factors, E3 ubiquitin ligase, and ROS metabolism. Silencing of SiIPT5 and SiATL31 genes through RNAi in transgenic plants resulted in reduced SNS response, indicating their role in the nitrogen signaling pathway of foxtail millet. Furthermore, the induction of ROS metabolism-related genes in response to KNO<sub>3</sub> of the split-root System (Sp.KNO<sub>3</sub>) suggests a potential involvement of ROS signaling in the SNS of foxtail millet. Overall, this study sheds light on the molecular regulatory mechanisms and metabolic pathways of foxtail millet in relation to SNS.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"43 10","pages":"243"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of systemic nitrogen signaling in foxtail millet (Setaria italica) roots based on split-root system and transcriptome analysis.\",\"authors\":\"Xin-Li Yao, Yu-Ze Wang, Hui-Xin Meng, Ming-Hua Zhang, Xuan Zhou, Xue-Ting Kang, Shuqi Dong, Xiangyang Yuan, Xiaorui Li, Lulu Gao, Guanghui Yang, Xiaoqian Chu, Jia-Gang Wang\",\"doi\":\"10.1007/s00299-024-03338-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>The study established split-root system (SRS) in foxtail millet, and identified the molecular regulatory mechanisms and metabolic pathways related to systemic nitrogen signaling based on this system and transcriptome analysis. The growth of crops is primarily constrained by the availability of nitrogen (N), an essential nutrient. Foxtail millet (Setaria italica L.) is a significant orphan crop known for its strong tolerance to barren conditions. Despite this, the signaling pathway of nitrogen in foxtail millet remains largely unexplored. Identifying the candidate genes responsible for nitrogen response in foxtail millet is crucial for enhancing its agricultural productivity. This study utilized the split-root system (SRS) in foxtail millet to uncover genes associated with Systemic Nitrogen Signaling (SNS). Transcriptome analysis of the SRS revealed 2158 differentially expressed genes (DEGs) implicated in SNS, including those involved in cytokinin synthesis, transcription factors, E3 ubiquitin ligase, and ROS metabolism. Silencing of SiIPT5 and SiATL31 genes through RNAi in transgenic plants resulted in reduced SNS response, indicating their role in the nitrogen signaling pathway of foxtail millet. Furthermore, the induction of ROS metabolism-related genes in response to KNO<sub>3</sub> of the split-root System (Sp.KNO<sub>3</sub>) suggests a potential involvement of ROS signaling in the SNS of foxtail millet. Overall, this study sheds light on the molecular regulatory mechanisms and metabolic pathways of foxtail millet in relation to SNS.</p>\",\"PeriodicalId\":20204,\"journal\":{\"name\":\"Plant Cell Reports\",\"volume\":\"43 10\",\"pages\":\"243\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00299-024-03338-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03338-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

关键信息该研究在狐尾粟中建立了分根系统(SRS),并基于该系统和转录组分析确定了与系统氮信号转导相关的分子调控机制和代谢途径。农作物的生长主要受到氮(N)这一必需营养元素供应的制约。狐尾黍(Setaria italica L.)是一种重要的孤本作物,以其对贫瘠条件的强大耐受性而闻名。尽管如此,狐尾粟的氮信号途径在很大程度上仍未得到探索。确定狐尾粟氮响应的候选基因对提高其农业生产力至关重要。本研究利用狐尾黍的分根系统(SRS)来发现与系统氮信号(SNS)相关的基因。SRS的转录组分析揭示了2158个与SNS有关的差异表达基因(DEGs),包括参与细胞分裂素合成、转录因子、E3泛素连接酶和ROS代谢的基因。在转基因植株中通过 RNAi 沉默 SiIPT5 和 SiATL31 基因会导致 SNS 反应减弱,这表明它们在狐尾粟氮素信号通路中的作用。此外,ROS 代谢相关基因对分根系统 KNO3(Sp.KNO3)的诱导表明,ROS 信号转导可能参与了狐尾黍的 SNS。总之,本研究揭示了狐尾粟与SNS相关的分子调控机制和代谢途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of systemic nitrogen signaling in foxtail millet (Setaria italica) roots based on split-root system and transcriptome analysis.

Key message: The study established split-root system (SRS) in foxtail millet, and identified the molecular regulatory mechanisms and metabolic pathways related to systemic nitrogen signaling based on this system and transcriptome analysis. The growth of crops is primarily constrained by the availability of nitrogen (N), an essential nutrient. Foxtail millet (Setaria italica L.) is a significant orphan crop known for its strong tolerance to barren conditions. Despite this, the signaling pathway of nitrogen in foxtail millet remains largely unexplored. Identifying the candidate genes responsible for nitrogen response in foxtail millet is crucial for enhancing its agricultural productivity. This study utilized the split-root system (SRS) in foxtail millet to uncover genes associated with Systemic Nitrogen Signaling (SNS). Transcriptome analysis of the SRS revealed 2158 differentially expressed genes (DEGs) implicated in SNS, including those involved in cytokinin synthesis, transcription factors, E3 ubiquitin ligase, and ROS metabolism. Silencing of SiIPT5 and SiATL31 genes through RNAi in transgenic plants resulted in reduced SNS response, indicating their role in the nitrogen signaling pathway of foxtail millet. Furthermore, the induction of ROS metabolism-related genes in response to KNO3 of the split-root System (Sp.KNO3) suggests a potential involvement of ROS signaling in the SNS of foxtail millet. Overall, this study sheds light on the molecular regulatory mechanisms and metabolic pathways of foxtail millet in relation to SNS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
期刊最新文献
Reactive oxygen and nitrogen species in plant defense mechanisms. Single-cell transcriptomics: a new frontier in plant biotechnology research. Ectopic expression of HvbHLH132 from hulless barley reduces cold tolerance in transgenic Arabidopsis thaliana. Genome-wide association study identified BnaPAP17 genes involved in exogenous ATP utilization and regulating phosphorous content in Brassica napus. Two genes encoding a bacterial-type ABC transporter function in aluminum tolerance in soybean.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1