基于会话的推荐中的图和序列神经网络:调查

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS ACM Computing Surveys Pub Date : 2024-09-18 DOI:10.1145/3696413
Zihao Li, Chao Yang, Yakun Chen, Xianzhi Wang, Hongxu Chen, Guandong Xu, Lina Yao, Michael Sheng
{"title":"基于会话的推荐中的图和序列神经网络:调查","authors":"Zihao Li, Chao Yang, Yakun Chen, Xianzhi Wang, Hongxu Chen, Guandong Xu, Lina Yao, Michael Sheng","doi":"10.1145/3696413","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed the remarkable success of recommendation systems (RSs) in alleviating the information overload problem. As a new paradigm of RSs, session-based recommendation (SR) specializes in users’ short-term preferences and aims to provide a more dynamic and timely recommendation based on ongoing interactions. This survey presents a comprehensive overview of the recent works on SR. First, we clarify the key definitions within SR and compare the characteristics of SR against other recommendation tasks. Then, we summarize the existing methods in two categories: sequential neural network based methods and graph neural network (GNN) based methods. The relevant frameworks and technical details are further introduced. Finally, we discuss the challenges of SR and new research directions in this area.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"39 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph and Sequential Neural Networks in Session-based Recommendation: A Survey\",\"authors\":\"Zihao Li, Chao Yang, Yakun Chen, Xianzhi Wang, Hongxu Chen, Guandong Xu, Lina Yao, Michael Sheng\",\"doi\":\"10.1145/3696413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have witnessed the remarkable success of recommendation systems (RSs) in alleviating the information overload problem. As a new paradigm of RSs, session-based recommendation (SR) specializes in users’ short-term preferences and aims to provide a more dynamic and timely recommendation based on ongoing interactions. This survey presents a comprehensive overview of the recent works on SR. First, we clarify the key definitions within SR and compare the characteristics of SR against other recommendation tasks. Then, we summarize the existing methods in two categories: sequential neural network based methods and graph neural network (GNN) based methods. The relevant frameworks and technical details are further introduced. Finally, we discuss the challenges of SR and new research directions in this area.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3696413\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3696413","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,推荐系统(RS)在缓解信息过载问题方面取得了巨大成功。作为推荐系统的一种新模式,基于会话的推荐(SR)专门针对用户的短期偏好,旨在根据持续的互动提供更动态、更及时的推荐。本调查报告全面概述了最近有关会话推荐的研究成果。首先,我们明确了 SR 的关键定义,并将 SR 的特点与其他推荐任务进行了比较。然后,我们将现有方法归纳为两类:基于序列神经网络的方法和基于图神经网络(GNN)的方法。我们还进一步介绍了相关框架和技术细节。最后,我们讨论了 SR 所面临的挑战以及该领域新的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph and Sequential Neural Networks in Session-based Recommendation: A Survey
Recent years have witnessed the remarkable success of recommendation systems (RSs) in alleviating the information overload problem. As a new paradigm of RSs, session-based recommendation (SR) specializes in users’ short-term preferences and aims to provide a more dynamic and timely recommendation based on ongoing interactions. This survey presents a comprehensive overview of the recent works on SR. First, we clarify the key definitions within SR and compare the characteristics of SR against other recommendation tasks. Then, we summarize the existing methods in two categories: sequential neural network based methods and graph neural network (GNN) based methods. The relevant frameworks and technical details are further introduced. Finally, we discuss the challenges of SR and new research directions in this area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
期刊最新文献
AI-powered Fraud Detection in Decentralized Finance: A Project Life Cycle Perspective Wi-Fi Sensing Techniques for Human Activity Recognition: Brief Survey, Potential Challenges, and Research Directions Causal Discovery from Temporal Data: An Overview and New Perspectives Explainable Artificial Intelligence: Importance, Use Domains, Stages, Output Shapes, and Challenges Racial Bias within Face Recognition: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1