{"title":"运动变量、时间延迟和数据长度对人体行走最大李亚普诺夫指数测试-再测可靠性的影响","authors":"Ilseung Park, Jun Hyuk Lee, Jooeun Ahn","doi":"10.1098/rsos.240333","DOIUrl":null,"url":null,"abstract":"<p><p>The maximal Lyapunov exponent (MLE) has been used to quantify the dynamic stability of human locomotion. The method for estimating MLE requires selecting a proper time series of kinematic variables and reconstructing phase space using proper time delay. The data length also affects the reliability of the measured MLE. However, there has been no criterion for the choice of the time series, time delay or data length. Here, we quantified the effect of these factors on the test-retest reliability of MLE estimations. We recruited 15 young and healthy adults and let them walk on a treadmill three times. We calculated MLE employing various lengths of time series of 18 frequently used kinematic variables and two typical choices of time delay: fixed delay and delay selected by average mutual information algorithm. Then, we measured the intraclass correlation coefficient (ICC) of the measured MLE under each condition. Our results show that the choice of time delay does not affect reliability. Five among the 18 kinematic variables enabled excellent reliability with ICC above 0.9 within 450 strides and also enabled ICC above 0.75 even with 60 or less strides. These findings can contribute to establishing the criteria for measuring the dynamic stability of human walking.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 10","pages":"240333"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461070/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of the kinematic variable, time delay and data length on test-retest reliability of the maximal Lyapunov exponent of human walking.\",\"authors\":\"Ilseung Park, Jun Hyuk Lee, Jooeun Ahn\",\"doi\":\"10.1098/rsos.240333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The maximal Lyapunov exponent (MLE) has been used to quantify the dynamic stability of human locomotion. The method for estimating MLE requires selecting a proper time series of kinematic variables and reconstructing phase space using proper time delay. The data length also affects the reliability of the measured MLE. However, there has been no criterion for the choice of the time series, time delay or data length. Here, we quantified the effect of these factors on the test-retest reliability of MLE estimations. We recruited 15 young and healthy adults and let them walk on a treadmill three times. We calculated MLE employing various lengths of time series of 18 frequently used kinematic variables and two typical choices of time delay: fixed delay and delay selected by average mutual information algorithm. Then, we measured the intraclass correlation coefficient (ICC) of the measured MLE under each condition. Our results show that the choice of time delay does not affect reliability. Five among the 18 kinematic variables enabled excellent reliability with ICC above 0.9 within 450 strides and also enabled ICC above 0.75 even with 60 or less strides. These findings can contribute to establishing the criteria for measuring the dynamic stability of human walking.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"11 10\",\"pages\":\"240333\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461070/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.240333\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240333","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Effects of the kinematic variable, time delay and data length on test-retest reliability of the maximal Lyapunov exponent of human walking.
The maximal Lyapunov exponent (MLE) has been used to quantify the dynamic stability of human locomotion. The method for estimating MLE requires selecting a proper time series of kinematic variables and reconstructing phase space using proper time delay. The data length also affects the reliability of the measured MLE. However, there has been no criterion for the choice of the time series, time delay or data length. Here, we quantified the effect of these factors on the test-retest reliability of MLE estimations. We recruited 15 young and healthy adults and let them walk on a treadmill three times. We calculated MLE employing various lengths of time series of 18 frequently used kinematic variables and two typical choices of time delay: fixed delay and delay selected by average mutual information algorithm. Then, we measured the intraclass correlation coefficient (ICC) of the measured MLE under each condition. Our results show that the choice of time delay does not affect reliability. Five among the 18 kinematic variables enabled excellent reliability with ICC above 0.9 within 450 strides and also enabled ICC above 0.75 even with 60 or less strides. These findings can contribute to establishing the criteria for measuring the dynamic stability of human walking.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.