Junxing Li, Shiyi Ye, Fei Su, Bin Yu, Lihua Xu, Hongchao Sun, Xiufang Yuan
{"title":"转录组分析揭示了一种新的与毒力相关的三聚体自体转运体,该转运体负责寄生褐喉蛆虫的自体凝集。","authors":"Junxing Li, Shiyi Ye, Fei Su, Bin Yu, Lihua Xu, Hongchao Sun, Xiufang Yuan","doi":"10.1186/s13567-024-01387-7","DOIUrl":null,"url":null,"abstract":"<p><p>Capsular polysaccharide is an important virulence factor of Glaesserella parasuis. An acapsular mutant displays multiple phenotype variations, while the underlying mechanism for these variations is unknown. In this study, we created an acapsular mutant by deleting the wza gene in the capsule locus. We then used transcriptome analysis to compare the gene expression profiles of the wza deletion mutant with those of the parental strain to understand the possible reasons for the phenotypic differences. The mutant Δwza, which has a deleted wza gene, secreted less polysaccharide and lost its capsule structure. The Δwza exhibited increased autoagglutination, biofilm formation and adherence to eukaryotic cells, while the complementary strain C-Δwza partially restored the phenotype. Transcriptome analysis revealed several differentially expressed genes (DEGs) in Δwza, including up-regulated outer membrane proteins and proteins involved in peptidoglycan biosynthesis, suggesting that wza deletion affects the cell wall homeostasis of G. parasuis. Transcriptome analysis revealed the contribution of non-coding RNAs in the regulation of DEGs. Moreover, a new virulence-associated trimeric autotransporter, VtaA31 is upregulated in Δwza. It is responsible for enhanced autoagglutination but not for enhanced biofilm formation and adherence to eukaryotic cells in Δwza. In conclusion, these data indicate that wza affects the expression of multiple genes, especially those related to cell wall synthesis. Furthermore, they provide evidence that vtaA31 is involved in the autoagglutination of G. parasuis.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"55 1","pages":"130"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460128/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcriptome analysis reveals a new virulence-associated trimeric autotransporter responsible for Glaesserella parasuis autoagglutination.\",\"authors\":\"Junxing Li, Shiyi Ye, Fei Su, Bin Yu, Lihua Xu, Hongchao Sun, Xiufang Yuan\",\"doi\":\"10.1186/s13567-024-01387-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Capsular polysaccharide is an important virulence factor of Glaesserella parasuis. An acapsular mutant displays multiple phenotype variations, while the underlying mechanism for these variations is unknown. In this study, we created an acapsular mutant by deleting the wza gene in the capsule locus. We then used transcriptome analysis to compare the gene expression profiles of the wza deletion mutant with those of the parental strain to understand the possible reasons for the phenotypic differences. The mutant Δwza, which has a deleted wza gene, secreted less polysaccharide and lost its capsule structure. The Δwza exhibited increased autoagglutination, biofilm formation and adherence to eukaryotic cells, while the complementary strain C-Δwza partially restored the phenotype. Transcriptome analysis revealed several differentially expressed genes (DEGs) in Δwza, including up-regulated outer membrane proteins and proteins involved in peptidoglycan biosynthesis, suggesting that wza deletion affects the cell wall homeostasis of G. parasuis. Transcriptome analysis revealed the contribution of non-coding RNAs in the regulation of DEGs. Moreover, a new virulence-associated trimeric autotransporter, VtaA31 is upregulated in Δwza. It is responsible for enhanced autoagglutination but not for enhanced biofilm formation and adherence to eukaryotic cells in Δwza. In conclusion, these data indicate that wza affects the expression of multiple genes, especially those related to cell wall synthesis. Furthermore, they provide evidence that vtaA31 is involved in the autoagglutination of G. parasuis.</p>\",\"PeriodicalId\":23658,\"journal\":{\"name\":\"Veterinary Research\",\"volume\":\"55 1\",\"pages\":\"130\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460128/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s13567-024-01387-7\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-024-01387-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Transcriptome analysis reveals a new virulence-associated trimeric autotransporter responsible for Glaesserella parasuis autoagglutination.
Capsular polysaccharide is an important virulence factor of Glaesserella parasuis. An acapsular mutant displays multiple phenotype variations, while the underlying mechanism for these variations is unknown. In this study, we created an acapsular mutant by deleting the wza gene in the capsule locus. We then used transcriptome analysis to compare the gene expression profiles of the wza deletion mutant with those of the parental strain to understand the possible reasons for the phenotypic differences. The mutant Δwza, which has a deleted wza gene, secreted less polysaccharide and lost its capsule structure. The Δwza exhibited increased autoagglutination, biofilm formation and adherence to eukaryotic cells, while the complementary strain C-Δwza partially restored the phenotype. Transcriptome analysis revealed several differentially expressed genes (DEGs) in Δwza, including up-regulated outer membrane proteins and proteins involved in peptidoglycan biosynthesis, suggesting that wza deletion affects the cell wall homeostasis of G. parasuis. Transcriptome analysis revealed the contribution of non-coding RNAs in the regulation of DEGs. Moreover, a new virulence-associated trimeric autotransporter, VtaA31 is upregulated in Δwza. It is responsible for enhanced autoagglutination but not for enhanced biofilm formation and adherence to eukaryotic cells in Δwza. In conclusion, these data indicate that wza affects the expression of multiple genes, especially those related to cell wall synthesis. Furthermore, they provide evidence that vtaA31 is involved in the autoagglutination of G. parasuis.
期刊介绍:
Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.