高有效接触比外直齿轮齿根应力分析

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanism and Machine Theory Pub Date : 2024-10-14 DOI:10.1016/j.mechmachtheory.2024.105813
José I. Pedrero , Miryam B. Sánchez , Miguel Pleguezuelos , Alfonso Fuentes-Aznar
{"title":"高有效接触比外直齿轮齿根应力分析","authors":"José I. Pedrero ,&nbsp;Miryam B. Sánchez ,&nbsp;Miguel Pleguezuelos ,&nbsp;Alfonso Fuentes-Aznar","doi":"10.1016/j.mechmachtheory.2024.105813","DOIUrl":null,"url":null,"abstract":"<div><div>For spur gears with contact ratio close to 2, the extension of the contact interval resulting from loaded tooth deflections and local contact deformations may result in an effective contact ratio above 2. In these cases, the load is transmitted by at least two tooth-pairs, the maximum load and tooth-root stress decrease, and therefore the calculation methods of the gear rating Standards ISO and AGMA provide very conservative results. In this work, two models are applied to the calculation of the tooth-root stress of load-induced high contact ratio external gears: (i) an analytic model of load sharing, based on the minimum energy method, and (ii) a finite element model, which validates the results obtained from the previous model. Obtained values of the stress are compared with those provided by ISO and AGMA rating methods, which do not account for the stress reduction due to the higher contact ratio. A new modification coefficient is proposed to correct these conservative values, which allows the AGMA and ISO geometry factors to remain as no load-dependent factors and keep their actual calculation methods and significance.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105813"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the tooth-root stress of external spur gears with high effective contact ratio\",\"authors\":\"José I. Pedrero ,&nbsp;Miryam B. Sánchez ,&nbsp;Miguel Pleguezuelos ,&nbsp;Alfonso Fuentes-Aznar\",\"doi\":\"10.1016/j.mechmachtheory.2024.105813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For spur gears with contact ratio close to 2, the extension of the contact interval resulting from loaded tooth deflections and local contact deformations may result in an effective contact ratio above 2. In these cases, the load is transmitted by at least two tooth-pairs, the maximum load and tooth-root stress decrease, and therefore the calculation methods of the gear rating Standards ISO and AGMA provide very conservative results. In this work, two models are applied to the calculation of the tooth-root stress of load-induced high contact ratio external gears: (i) an analytic model of load sharing, based on the minimum energy method, and (ii) a finite element model, which validates the results obtained from the previous model. Obtained values of the stress are compared with those provided by ISO and AGMA rating methods, which do not account for the stress reduction due to the higher contact ratio. A new modification coefficient is proposed to correct these conservative values, which allows the AGMA and ISO geometry factors to remain as no load-dependent factors and keep their actual calculation methods and significance.</div></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":\"203 \",\"pages\":\"Article 105813\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24002404\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24002404","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于接触比接近 2 的正齿轮,加载的齿挠度和局部接触变形导致的接触间隔延长可能会使有效接触比超过 2。在这种情况下,载荷至少由两个齿对传递,最大载荷和齿根应力都会降低,因此齿轮等级标准 ISO 和 AGMA 的计算方法提供的结果非常保守。在这项工作中,应用了两种模型来计算负载引起的高接触比外齿轮的齿根应力:(i) 基于最小能量法的负载分担分析模型;(ii) 有限元模型,该模型验证了前一模型得出的结果。获得的应力值与 ISO 和 AGMA 等级评定方法提供的应力值进行了比较,后者没有考虑到接触比增大导致的应力减小。我们提出了一个新的修正系数来修正这些保守值,从而使 AGMA 和 ISO 几何系数保持为不依赖载荷的系数,并保留其实际计算方法和意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the tooth-root stress of external spur gears with high effective contact ratio
For spur gears with contact ratio close to 2, the extension of the contact interval resulting from loaded tooth deflections and local contact deformations may result in an effective contact ratio above 2. In these cases, the load is transmitted by at least two tooth-pairs, the maximum load and tooth-root stress decrease, and therefore the calculation methods of the gear rating Standards ISO and AGMA provide very conservative results. In this work, two models are applied to the calculation of the tooth-root stress of load-induced high contact ratio external gears: (i) an analytic model of load sharing, based on the minimum energy method, and (ii) a finite element model, which validates the results obtained from the previous model. Obtained values of the stress are compared with those provided by ISO and AGMA rating methods, which do not account for the stress reduction due to the higher contact ratio. A new modification coefficient is proposed to correct these conservative values, which allows the AGMA and ISO geometry factors to remain as no load-dependent factors and keep their actual calculation methods and significance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
期刊最新文献
Order-of-magnitude increased range of constant force adjustment via section optimization Enhancing anti-disturbance performance of redundant cable-driven parallel robots: Analysis and tension distribution method Design and analysis of an origami-inspired redundant rigid-flexible coupling deployable manipulator Design and analysis of a novel octopod platform with spatial 8R reconfigurable trunk On the behaviour of n-planets planetary gear sets influenced by geometrical design factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1