{"title":"使用 N-杂环碳烯盐作为 C1 前体合成双(吲哚基)甲烷。","authors":"Bingwei Zhou, Zhao Gao, Yanhao Yang, Yuanyuan Hu","doi":"10.1039/d4ob01568a","DOIUrl":null,"url":null,"abstract":"<p><p>We herein describe an alkylation reaction of indoles with NHC salts to access bis(indolyl)methanes as product. The NHC salt (or free NHC) serves as a C1 precursor due to decomposition of its N-heterocyclic ring. Although the exact roles of zinc powder and acetic/formic acid remain elusive, both of them are indispensable for this reaction. Two possible reaction pathways are proposed based on the results of mechanistic experiments.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of bis(indolyl)methanes using N-heterocyclic carbene salt as a C1 precursor.\",\"authors\":\"Bingwei Zhou, Zhao Gao, Yanhao Yang, Yuanyuan Hu\",\"doi\":\"10.1039/d4ob01568a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We herein describe an alkylation reaction of indoles with NHC salts to access bis(indolyl)methanes as product. The NHC salt (or free NHC) serves as a C1 precursor due to decomposition of its N-heterocyclic ring. Although the exact roles of zinc powder and acetic/formic acid remain elusive, both of them are indispensable for this reaction. Two possible reaction pathways are proposed based on the results of mechanistic experiments.</p>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ob01568a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01568a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Synthesis of bis(indolyl)methanes using N-heterocyclic carbene salt as a C1 precursor.
We herein describe an alkylation reaction of indoles with NHC salts to access bis(indolyl)methanes as product. The NHC salt (or free NHC) serves as a C1 precursor due to decomposition of its N-heterocyclic ring. Although the exact roles of zinc powder and acetic/formic acid remain elusive, both of them are indispensable for this reaction. Two possible reaction pathways are proposed based on the results of mechanistic experiments.