{"title":"不同农业技术强化程度下欧亚大陆森林草原区温带大陆性气候切尔诺泽姆土壤中蓝藻和微藻的 DNA 元胞编码。","authors":"Vyacheslav Lukyanov, Lira Gaysina, Yurij Bukin, Prabhaharan Renganathan, Alexey Tupikin","doi":"10.1007/s11274-024-04133-5","DOIUrl":null,"url":null,"abstract":"<p><p>Chernozem soil is a valuable resource and contains a great diversity of microorganisms that play a global role in the process of soil formation, the species diversity of which has changed over the last five years under the influence of different agrotechnologies. For the first time, under the conditions of the Central Chernozem region, grain and fallow crop rotation, studies using the DNA-metabarcoding method were carried out to study the taxonomic structure of bacteria, fungi, cyanobacteria, and microalgae communities in the arable horizon of typical medium loamy chernozem under winter wheat cultivation. A comparative analysis of the composition of the genotypes showed significant differences in the presented level of mineral nutrition of the soil NPK (60) and NPK (100) compared with the control variant. After processing the 16S and 18S rRNA datasets, a similar trend of decreasing numbers of pro- and eukaryotic species was found from 6296 (control without MF) to 5310 with NPK (60) and to 4643 with NPK (100), respectively. The Chao1 index indicated that the expected diversity within the prokaryotic group was higher in the control without MF at 211, but decreased to 182 and 193 with NPK (60) and NPK (100) fertilizers, respectively. Analysis of the eukaryotic group revealed a 2.6- and 2.9-fold decrease in diversity by class and genus, respectively, depending on the nutritional levels in agrotechnologies, owing to the use of MF. In the prokaryotic community, Alphaproteobacteria microorganisms predominated at an amount of 14.20-14.46%, with Cyanophyceae accounting for 5.2-9.9%. The diversity of eukaryotes was smaller than the number of classes of prokaryotes; the main dominant were Zygnematophyceae 19.5-41%, Chlorophyceae occupied 10.4-15.8%. On the other hand, the doses of fertilizers used contributed to the emergence of dominant species adapted to high doses of mineral nutrients for plants.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"351"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA-metabarcoding of cyanobacteria and microalgae in chernozem soils of temperate continental climate of the forest-steppe zone of Eurasia under different degrees of agrotechnology intensification.\",\"authors\":\"Vyacheslav Lukyanov, Lira Gaysina, Yurij Bukin, Prabhaharan Renganathan, Alexey Tupikin\",\"doi\":\"10.1007/s11274-024-04133-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chernozem soil is a valuable resource and contains a great diversity of microorganisms that play a global role in the process of soil formation, the species diversity of which has changed over the last five years under the influence of different agrotechnologies. For the first time, under the conditions of the Central Chernozem region, grain and fallow crop rotation, studies using the DNA-metabarcoding method were carried out to study the taxonomic structure of bacteria, fungi, cyanobacteria, and microalgae communities in the arable horizon of typical medium loamy chernozem under winter wheat cultivation. A comparative analysis of the composition of the genotypes showed significant differences in the presented level of mineral nutrition of the soil NPK (60) and NPK (100) compared with the control variant. After processing the 16S and 18S rRNA datasets, a similar trend of decreasing numbers of pro- and eukaryotic species was found from 6296 (control without MF) to 5310 with NPK (60) and to 4643 with NPK (100), respectively. The Chao1 index indicated that the expected diversity within the prokaryotic group was higher in the control without MF at 211, but decreased to 182 and 193 with NPK (60) and NPK (100) fertilizers, respectively. Analysis of the eukaryotic group revealed a 2.6- and 2.9-fold decrease in diversity by class and genus, respectively, depending on the nutritional levels in agrotechnologies, owing to the use of MF. In the prokaryotic community, Alphaproteobacteria microorganisms predominated at an amount of 14.20-14.46%, with Cyanophyceae accounting for 5.2-9.9%. The diversity of eukaryotes was smaller than the number of classes of prokaryotes; the main dominant were Zygnematophyceae 19.5-41%, Chlorophyceae occupied 10.4-15.8%. On the other hand, the doses of fertilizers used contributed to the emergence of dominant species adapted to high doses of mineral nutrients for plants.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"40 11\",\"pages\":\"351\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-024-04133-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04133-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
DNA-metabarcoding of cyanobacteria and microalgae in chernozem soils of temperate continental climate of the forest-steppe zone of Eurasia under different degrees of agrotechnology intensification.
Chernozem soil is a valuable resource and contains a great diversity of microorganisms that play a global role in the process of soil formation, the species diversity of which has changed over the last five years under the influence of different agrotechnologies. For the first time, under the conditions of the Central Chernozem region, grain and fallow crop rotation, studies using the DNA-metabarcoding method were carried out to study the taxonomic structure of bacteria, fungi, cyanobacteria, and microalgae communities in the arable horizon of typical medium loamy chernozem under winter wheat cultivation. A comparative analysis of the composition of the genotypes showed significant differences in the presented level of mineral nutrition of the soil NPK (60) and NPK (100) compared with the control variant. After processing the 16S and 18S rRNA datasets, a similar trend of decreasing numbers of pro- and eukaryotic species was found from 6296 (control without MF) to 5310 with NPK (60) and to 4643 with NPK (100), respectively. The Chao1 index indicated that the expected diversity within the prokaryotic group was higher in the control without MF at 211, but decreased to 182 and 193 with NPK (60) and NPK (100) fertilizers, respectively. Analysis of the eukaryotic group revealed a 2.6- and 2.9-fold decrease in diversity by class and genus, respectively, depending on the nutritional levels in agrotechnologies, owing to the use of MF. In the prokaryotic community, Alphaproteobacteria microorganisms predominated at an amount of 14.20-14.46%, with Cyanophyceae accounting for 5.2-9.9%. The diversity of eukaryotes was smaller than the number of classes of prokaryotes; the main dominant were Zygnematophyceae 19.5-41%, Chlorophyceae occupied 10.4-15.8%. On the other hand, the doses of fertilizers used contributed to the emergence of dominant species adapted to high doses of mineral nutrients for plants.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.