{"title":"阐明高度芽孢杆菌微生物代谢产物的生态友好型除草潜力。","authors":"Xiu-Hua Ma, Shuo Shen, Wei Li, Jian Wang","doi":"10.1007/s11274-024-04154-0","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial herbicides play a vital role in agricultural preservation, amid growing concerns over the ecological impact from extensive development and use of chemical herbicides. Utilizing beneficial microbial metabolites to combat weeds has become a significant focus of research. This study focused on isolating herbicidal active compounds from Bacillus altitudinis D30202 through activity-guided methods. First, the n-butanol extract (n-BE) of B. altitudinis D30202 underwent fractionation using macroporous adsorption resin D101 and Sephadex LH-20, identifying Fr. F as the most potent segment against wild oats (Avena fatua L.). Ultra-performance liquid chromatography - quadrupole time-of-flight mass spectrometry (UPLC - QTOF-MS) identified nine compounds in the active fraction Fr. F. Subsequently, three subfractions (Fr.F-1 to Fr.F-3) were derived from Fr.F via semi-preparative liquid chromatography, resulting in methyl indole-3-acetate (MeIAA) purification. MeIAA, functioning as an auxin analog, exhibited effects of indole-3-acetic acid (IAA) on wild oats' growth, with a root length median inhibitory concentration of 81.06 µg/ml. Furthermore, we assessed MeIAA's herbicidal impact on five weed species across diverse families and genera, providing a first-time analysis of MeIAA's mechanism on wild oats. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed structural damage to leaves and roots post-MeIAA treatment. MeIAA treatment increased superoxide anion and hydrogen peroxide levels in wild oat roots, alongside with elevated peroxidase (POD) and superoxide dismutase (SOD) activity, chlorophyll-degrading enzymes (Chlase, MDACase), malondialdehyde (MDA) content, and relative conductivity in leaves. Conversely, it decreased catalase (CAT) activity and chlorophyll content. Therefore, this study provides a new material source and theoretical foundation for ecologically sustainable agricultural weed control.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"356"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the eco-friendly herbicidal potential of microbial metabolites from Bacillus altitudinis.\",\"authors\":\"Xiu-Hua Ma, Shuo Shen, Wei Li, Jian Wang\",\"doi\":\"10.1007/s11274-024-04154-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial herbicides play a vital role in agricultural preservation, amid growing concerns over the ecological impact from extensive development and use of chemical herbicides. Utilizing beneficial microbial metabolites to combat weeds has become a significant focus of research. This study focused on isolating herbicidal active compounds from Bacillus altitudinis D30202 through activity-guided methods. First, the n-butanol extract (n-BE) of B. altitudinis D30202 underwent fractionation using macroporous adsorption resin D101 and Sephadex LH-20, identifying Fr. F as the most potent segment against wild oats (Avena fatua L.). Ultra-performance liquid chromatography - quadrupole time-of-flight mass spectrometry (UPLC - QTOF-MS) identified nine compounds in the active fraction Fr. F. Subsequently, three subfractions (Fr.F-1 to Fr.F-3) were derived from Fr.F via semi-preparative liquid chromatography, resulting in methyl indole-3-acetate (MeIAA) purification. MeIAA, functioning as an auxin analog, exhibited effects of indole-3-acetic acid (IAA) on wild oats' growth, with a root length median inhibitory concentration of 81.06 µg/ml. Furthermore, we assessed MeIAA's herbicidal impact on five weed species across diverse families and genera, providing a first-time analysis of MeIAA's mechanism on wild oats. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed structural damage to leaves and roots post-MeIAA treatment. MeIAA treatment increased superoxide anion and hydrogen peroxide levels in wild oat roots, alongside with elevated peroxidase (POD) and superoxide dismutase (SOD) activity, chlorophyll-degrading enzymes (Chlase, MDACase), malondialdehyde (MDA) content, and relative conductivity in leaves. Conversely, it decreased catalase (CAT) activity and chlorophyll content. Therefore, this study provides a new material source and theoretical foundation for ecologically sustainable agricultural weed control.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"40 11\",\"pages\":\"356\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-024-04154-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04154-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Elucidating the eco-friendly herbicidal potential of microbial metabolites from Bacillus altitudinis.
Microbial herbicides play a vital role in agricultural preservation, amid growing concerns over the ecological impact from extensive development and use of chemical herbicides. Utilizing beneficial microbial metabolites to combat weeds has become a significant focus of research. This study focused on isolating herbicidal active compounds from Bacillus altitudinis D30202 through activity-guided methods. First, the n-butanol extract (n-BE) of B. altitudinis D30202 underwent fractionation using macroporous adsorption resin D101 and Sephadex LH-20, identifying Fr. F as the most potent segment against wild oats (Avena fatua L.). Ultra-performance liquid chromatography - quadrupole time-of-flight mass spectrometry (UPLC - QTOF-MS) identified nine compounds in the active fraction Fr. F. Subsequently, three subfractions (Fr.F-1 to Fr.F-3) were derived from Fr.F via semi-preparative liquid chromatography, resulting in methyl indole-3-acetate (MeIAA) purification. MeIAA, functioning as an auxin analog, exhibited effects of indole-3-acetic acid (IAA) on wild oats' growth, with a root length median inhibitory concentration of 81.06 µg/ml. Furthermore, we assessed MeIAA's herbicidal impact on five weed species across diverse families and genera, providing a first-time analysis of MeIAA's mechanism on wild oats. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed structural damage to leaves and roots post-MeIAA treatment. MeIAA treatment increased superoxide anion and hydrogen peroxide levels in wild oat roots, alongside with elevated peroxidase (POD) and superoxide dismutase (SOD) activity, chlorophyll-degrading enzymes (Chlase, MDACase), malondialdehyde (MDA) content, and relative conductivity in leaves. Conversely, it decreased catalase (CAT) activity and chlorophyll content. Therefore, this study provides a new material source and theoretical foundation for ecologically sustainable agricultural weed control.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.