玻璃态聚合物在宽温度范围内的过老化现象

IF 5.1 1区 化学 Q1 POLYMER SCIENCE Macromolecules Pub Date : 2024-10-23 DOI:10.1021/acs.macromol.4c01274
Tingyu Xu, Yunhan Zhang, Fan Peng, Renkuan Cao, Ziwei Liu, Hao Sun, Liangbin Li
{"title":"玻璃态聚合物在宽温度范围内的过老化现象","authors":"Tingyu Xu, Yunhan Zhang, Fan Peng, Renkuan Cao, Ziwei Liu, Hao Sun, Liangbin Li","doi":"10.1021/acs.macromol.4c01274","DOIUrl":null,"url":null,"abstract":"Mechanical deformation is known to affect the stability of glassy systems. Some studies report that small-amplitude loading leads to overaging, while large-amplitude loading rejuvenates the system. Recent experiments, however, have shown no overaging effect in lightly cross-linked poly(methyl methacrylate) (PMMA) glasses, raising concerns about previous simulation results. Given the importance of understanding physical aging, this work uses coarse-grained molecular dynamics simulations to examine the impact of cyclic loading/unloading on glassy polymers. The results indicate that overaging occurs in glassy polymer systems only below the Vogel–Fulcher–Tammann temperature (<i>T</i><sub>VFT</sub>). Above <i>T</i><sub>VFT</sub>, mechanical perturbations with amplitudes below the critical strain significantly accelerate the structural relaxation. Counterintuitively, these perturbations have minimal effect on inherent energy and all examined structural parameters, while particle mobility shows a clear proportional enhancement and increased spatial correlation.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"46 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overaging in Glassy Polymers within a Wide Range of Temperature\",\"authors\":\"Tingyu Xu, Yunhan Zhang, Fan Peng, Renkuan Cao, Ziwei Liu, Hao Sun, Liangbin Li\",\"doi\":\"10.1021/acs.macromol.4c01274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanical deformation is known to affect the stability of glassy systems. Some studies report that small-amplitude loading leads to overaging, while large-amplitude loading rejuvenates the system. Recent experiments, however, have shown no overaging effect in lightly cross-linked poly(methyl methacrylate) (PMMA) glasses, raising concerns about previous simulation results. Given the importance of understanding physical aging, this work uses coarse-grained molecular dynamics simulations to examine the impact of cyclic loading/unloading on glassy polymers. The results indicate that overaging occurs in glassy polymer systems only below the Vogel–Fulcher–Tammann temperature (<i>T</i><sub>VFT</sub>). Above <i>T</i><sub>VFT</sub>, mechanical perturbations with amplitudes below the critical strain significantly accelerate the structural relaxation. Counterintuitively, these perturbations have minimal effect on inherent energy and all examined structural parameters, while particle mobility shows a clear proportional enhancement and increased spatial correlation.\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.macromol.4c01274\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01274","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,机械变形会影响玻璃态系统的稳定性。一些研究报告称,小振幅加载会导致过老化,而大振幅加载则会使系统恢复活力。然而,最近的实验表明,轻度交联的聚甲基丙烯酸甲酯(PMMA)玻璃没有过老化效应,这引起了人们对之前模拟结果的担忧。鉴于了解物理老化的重要性,本研究利用粗粒度分子动力学模拟来研究循环加载/卸载对玻璃态聚合物的影响。结果表明,玻璃态聚合物体系只有在 Vogel-Fulcher-Tammann 温度(TVFT)以下才会发生超老化。在 TVFT 以上,振幅低于临界应变的机械扰动会显著加速结构松弛。与直觉相反的是,这些扰动对固有能量和所有检测结构参数的影响微乎其微,而粒子流动性则明显呈比例增强,空间相关性也有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overaging in Glassy Polymers within a Wide Range of Temperature
Mechanical deformation is known to affect the stability of glassy systems. Some studies report that small-amplitude loading leads to overaging, while large-amplitude loading rejuvenates the system. Recent experiments, however, have shown no overaging effect in lightly cross-linked poly(methyl methacrylate) (PMMA) glasses, raising concerns about previous simulation results. Given the importance of understanding physical aging, this work uses coarse-grained molecular dynamics simulations to examine the impact of cyclic loading/unloading on glassy polymers. The results indicate that overaging occurs in glassy polymer systems only below the Vogel–Fulcher–Tammann temperature (TVFT). Above TVFT, mechanical perturbations with amplitudes below the critical strain significantly accelerate the structural relaxation. Counterintuitively, these perturbations have minimal effect on inherent energy and all examined structural parameters, while particle mobility shows a clear proportional enhancement and increased spatial correlation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
期刊最新文献
Thermo/pH-Responsive Multiamide-Functionalized Y-Junction-Bearing Polyacrylamides with Substituent-Dependent Thermal Reversibility Designing a Self-Healing Shape Memory Polymer with High Stiffness and Toughness: The Role of Nonuniform Chain Networks Time-Scale Bridging in Atomistic Simulations of Epoxy Polymer Mechanics Using Nonaffine Deformation Theory Chemistry Agnostic and Facile Method for Programming the Molecular Weight Distribution of Polymers Inducing Chiral Response in Conjugated Polymers Composed of Achiral Monomers Using Chiral End Groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1