受水生甲虫运动模式启发的自推进线性压电微执行器

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2024-09-27 DOI:10.3390/mi15101197
Xinjie Wang, Gen Wang
{"title":"受水生甲虫运动模式启发的自推进线性压电微执行器","authors":"Xinjie Wang, Gen Wang","doi":"10.3390/mi15101197","DOIUrl":null,"url":null,"abstract":"<p><p>The locomotion mechanisms and structural characteristics of insects in nature offer new perspectives and solutions for designing miniature actuators. Inspired by the underwater movement of aquatic beetles, this paper presents a bidirectional self-propelled linear piezoelectric micro-actuator (SLPMA), whose maximum size in three dimensions is currently recognized as the smallest known of the self-propelled piezoelectric linear micro-actuators. Through the superposition of two bending vibration modes, the proposed actuator generates an elliptical motion trajectory at its driving feet. The size was determined as 15 mm × 12.8 mm × 5 mm after finite element analysis (FEA) through modal and transient simulations. A mathematical model was established to analyze and validate the feasibility of the proposed design. Finally, a prototype was fabricated, and an experimental platform was constructed to test the driving characteristics of the SLPMA. The experimental results showed that the maximum no-load velocity and maximum carrying load of the prototype in the forward motion were 17.3 mm/s and 14.8 mN, respectively, while those in the backward motion were 20.5 mm/s and 15.9 mN, respectively.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509356/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Self-Propelled Linear Piezoelectric Micro-Actuator Inspired by the Movement Patterns of Aquatic Beetles.\",\"authors\":\"Xinjie Wang, Gen Wang\",\"doi\":\"10.3390/mi15101197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The locomotion mechanisms and structural characteristics of insects in nature offer new perspectives and solutions for designing miniature actuators. Inspired by the underwater movement of aquatic beetles, this paper presents a bidirectional self-propelled linear piezoelectric micro-actuator (SLPMA), whose maximum size in three dimensions is currently recognized as the smallest known of the self-propelled piezoelectric linear micro-actuators. Through the superposition of two bending vibration modes, the proposed actuator generates an elliptical motion trajectory at its driving feet. The size was determined as 15 mm × 12.8 mm × 5 mm after finite element analysis (FEA) through modal and transient simulations. A mathematical model was established to analyze and validate the feasibility of the proposed design. Finally, a prototype was fabricated, and an experimental platform was constructed to test the driving characteristics of the SLPMA. The experimental results showed that the maximum no-load velocity and maximum carrying load of the prototype in the forward motion were 17.3 mm/s and 14.8 mN, respectively, while those in the backward motion were 20.5 mm/s and 15.9 mN, respectively.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509356/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi15101197\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101197","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

自然界中昆虫的运动机制和结构特征为设计微型致动器提供了新的视角和解决方案。受水生甲虫水下运动的启发,本文提出了一种双向自走式线性压电微型致动器(SLPMA),其最大三维尺寸是目前已知自走式压电线性微型致动器中最小的。通过两种弯曲振动模式的叠加,拟议的致动器在其驱动脚处产生了椭圆运动轨迹。通过模态和瞬态模拟进行有限元分析(FEA)后,确定其尺寸为 15 mm × 12.8 mm × 5 mm。建立数学模型是为了分析和验证拟议设计的可行性。最后,制作了一个原型,并搭建了一个实验平台来测试 SLPMA 的驱动特性。实验结果表明,原型在向前运动时的最大空载速度和最大载荷分别为 17.3 mm/s 和 14.8 mN,而在向后运动时则分别为 20.5 mm/s 和 15.9 mN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Self-Propelled Linear Piezoelectric Micro-Actuator Inspired by the Movement Patterns of Aquatic Beetles.

The locomotion mechanisms and structural characteristics of insects in nature offer new perspectives and solutions for designing miniature actuators. Inspired by the underwater movement of aquatic beetles, this paper presents a bidirectional self-propelled linear piezoelectric micro-actuator (SLPMA), whose maximum size in three dimensions is currently recognized as the smallest known of the self-propelled piezoelectric linear micro-actuators. Through the superposition of two bending vibration modes, the proposed actuator generates an elliptical motion trajectory at its driving feet. The size was determined as 15 mm × 12.8 mm × 5 mm after finite element analysis (FEA) through modal and transient simulations. A mathematical model was established to analyze and validate the feasibility of the proposed design. Finally, a prototype was fabricated, and an experimental platform was constructed to test the driving characteristics of the SLPMA. The experimental results showed that the maximum no-load velocity and maximum carrying load of the prototype in the forward motion were 17.3 mm/s and 14.8 mN, respectively, while those in the backward motion were 20.5 mm/s and 15.9 mN, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
A Sub-1 ppm/°C Reference Voltage Source with a Wide Input Range. A Thorough Review of Emerging Technologies in Micro- and Nanochannel Fabrication: Limitations, Applications, and Comparison. Integration of Metrology in Grinding and Polishing Processes for Rotationally Symmetrical Aspherical Surfaces with Optimized Material Removal Functions. Investigation on the Machinability of Polycrystalline ZnS by Micro-Laser-Assisted Diamond Cutting. Optimal Control of FSBB Converter with Aquila Optimizer-Based PID Controller.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1