{"title":"制备和应用多克隆抗体快速检测放线菌绿环斑相关病毒。","authors":"Jing Shang, Hongping Feng, Yuxuan Wang, Yunan Wang, Xiao Zhang, Zhouyu Zhang","doi":"10.3390/v16101600","DOIUrl":null,"url":null,"abstract":"<p><p>Actinidia chlorotic ringspot-associated virus (AcCRaV, <i>Emaravirus actinidiae</i>) is prevalent in Chinese kiwifruit, leading to substantial yield reduction. The intricate nature of symptoms presents diagnostic challenges, underscoring the necessity for a rapid and accurate detection method that facilitates effective control. In this investigation, AcCRaV isolates from key kiwi-producing regions in Sichuan province were collected and analyzed, with representative strains chosen as experimental materials. Primers targeting the nucleoprotein gene of AcCRaV were designed, and their codon usage was optimized to enhance performance. Various serological methods utilizing polyclonal antibodies were developed, including ELISA, dot immunobinding assay, and AcCRaV-specific gold immunochromatographic bands (AcCRaV-GICS). Field samples exhibited high specificity and sensitivity when tested using these methods. Furthermore, the results obtained from a large number of field samples are consistent with those derived from RT-PCR analysis, further validating the applicability of our approach. A detection method capable of handling a large volume of field samples infected with AcCRaV is currently lacking; thus, our system construction provides an important reference for addressing this gap.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"16 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512300/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preparation and Application of Polyclonal Antibodies for the Rapid Detection of Actinidia Chlorotic Ringspot-Associated Virus.\",\"authors\":\"Jing Shang, Hongping Feng, Yuxuan Wang, Yunan Wang, Xiao Zhang, Zhouyu Zhang\",\"doi\":\"10.3390/v16101600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Actinidia chlorotic ringspot-associated virus (AcCRaV, <i>Emaravirus actinidiae</i>) is prevalent in Chinese kiwifruit, leading to substantial yield reduction. The intricate nature of symptoms presents diagnostic challenges, underscoring the necessity for a rapid and accurate detection method that facilitates effective control. In this investigation, AcCRaV isolates from key kiwi-producing regions in Sichuan province were collected and analyzed, with representative strains chosen as experimental materials. Primers targeting the nucleoprotein gene of AcCRaV were designed, and their codon usage was optimized to enhance performance. Various serological methods utilizing polyclonal antibodies were developed, including ELISA, dot immunobinding assay, and AcCRaV-specific gold immunochromatographic bands (AcCRaV-GICS). Field samples exhibited high specificity and sensitivity when tested using these methods. Furthermore, the results obtained from a large number of field samples are consistent with those derived from RT-PCR analysis, further validating the applicability of our approach. A detection method capable of handling a large volume of field samples infected with AcCRaV is currently lacking; thus, our system construction provides an important reference for addressing this gap.</p>\",\"PeriodicalId\":49328,\"journal\":{\"name\":\"Viruses-Basel\",\"volume\":\"16 10\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512300/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viruses-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/v16101600\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v16101600","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
Preparation and Application of Polyclonal Antibodies for the Rapid Detection of Actinidia Chlorotic Ringspot-Associated Virus.
Actinidia chlorotic ringspot-associated virus (AcCRaV, Emaravirus actinidiae) is prevalent in Chinese kiwifruit, leading to substantial yield reduction. The intricate nature of symptoms presents diagnostic challenges, underscoring the necessity for a rapid and accurate detection method that facilitates effective control. In this investigation, AcCRaV isolates from key kiwi-producing regions in Sichuan province were collected and analyzed, with representative strains chosen as experimental materials. Primers targeting the nucleoprotein gene of AcCRaV were designed, and their codon usage was optimized to enhance performance. Various serological methods utilizing polyclonal antibodies were developed, including ELISA, dot immunobinding assay, and AcCRaV-specific gold immunochromatographic bands (AcCRaV-GICS). Field samples exhibited high specificity and sensitivity when tested using these methods. Furthermore, the results obtained from a large number of field samples are consistent with those derived from RT-PCR analysis, further validating the applicability of our approach. A detection method capable of handling a large volume of field samples infected with AcCRaV is currently lacking; thus, our system construction provides an important reference for addressing this gap.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.