Rebecca E Colman, Marva Seifert, Andres De la Rossa, Sophia B Georghiou, Christine Hoogland, Swapna Uplekar, Sacha Laurent, Camilla Rodrigues, Priti Kambli, Nestani Tukvadze, Nino Maghradze, Shaheed V Omar, Lavania Joseph, Anita Suresh, Timothy C Rodwell
{"title":"评估用于诊断耐药结核病的无培养靶向新一代测序:对两种端到端商业工作流程的多中心临床研究","authors":"Rebecca E Colman, Marva Seifert, Andres De la Rossa, Sophia B Georghiou, Christine Hoogland, Swapna Uplekar, Sacha Laurent, Camilla Rodrigues, Priti Kambli, Nestani Tukvadze, Nino Maghradze, Shaheed V Omar, Lavania Joseph, Anita Suresh, Timothy C Rodwell","doi":"10.1016/s1473-3099(24)00586-3","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>Drug-resistant tuberculosis remains a major obstacle in ending the global tuberculosis epidemic. Deployment of molecular tools for comprehensive drug resistance profiling is imperative for successful detection and characterisation of tuberculosis drug resistance. We aimed to assess the diagnostic accuracy of a new class of molecular diagnostics for drug-resistant tuberculosis.<h3>Methods</h3>We conducted a prospective, cross-sectional, multicentre clinical evaluation of the performance of two targeted next-generation sequencing (tNGS) assays for drug-resistant tuberculosis at reference laboratories in three countries (Georgia, India, and South Africa) to assess diagnostic accuracy and index test failure rates. Eligible participants were aged 18 years or older, with molecularly confirmed pulmonary tuberculosis, and at risk for rifampicin-resistant tuberculosis. Sensitivity and specificity for both tNGS index tests (GenoScreen Deeplex Myc-TB and Oxford Nanopore Technologies [ONT] Tuberculosis Drug Resistance Test) were calculated for rifampicin, isoniazid, fluoroquinolones (moxifloxacin, levofloxacin), second line-injectables (amikacin, kanamycin, capreomycin), pyrazinamide, bedaquiline, linezolid, clofazimine, ethambutol, and streptomycin against a composite reference standard of phenotypic drug susceptibility testing and whole-genome sequencing.<h3>Findings</h3>Between April 1, 2021, and June 30, 2022, 832 individuals were invited to participate in the study, of whom 720 were included in the final analysis (212, 376, and 132 participants in Georgia, India, and South Africa, respectively). Of 720 clinical sediment samples evaluated, 658 (91%) and 684 (95%) produced complete or partial results on the GenoScreen and ONT tNGS workflows, respectively, with 593 (96%) and 603 (98%) of 616 smear-positive samples producing tNGS sequence data. Both workflows had sensitivities and specificities of more than 95% for rifampicin and isoniazid, and high accuracy for fluoroquinolones (sensitivity approximately ≥94%) and second line-injectables (sensitivity 80%) compared with the composite reference standard. Importantly, these assays also detected mutations associated with resistance to critical new and repurposed drugs (bedaquiline, linezolid) not currently detectable by any other WHO-recommended rapid diagnostics on the market. We note that the current format of assays have low sensitivity (≤50%) for linezolid and more work on mutations associated with drug resistance is needed.<h3>Interpretation</h3>This multicentre evaluation demonstrates that culture-free tNGS can provide accurate sequencing results for detection and characterisation of drug resistance from <em>Mycobacterium tuberculosis</em> clinical sediment samples for timely, comprehensive profiling of drug-resistant tuberculosis.<h3>Funding</h3>Unitaid.","PeriodicalId":49923,"journal":{"name":"Lancet Infectious Diseases","volume":"35 1","pages":""},"PeriodicalIF":36.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating culture-free targeted next-generation sequencing for diagnosing drug-resistant tuberculosis: a multicentre clinical study of two end-to-end commercial workflows\",\"authors\":\"Rebecca E Colman, Marva Seifert, Andres De la Rossa, Sophia B Georghiou, Christine Hoogland, Swapna Uplekar, Sacha Laurent, Camilla Rodrigues, Priti Kambli, Nestani Tukvadze, Nino Maghradze, Shaheed V Omar, Lavania Joseph, Anita Suresh, Timothy C Rodwell\",\"doi\":\"10.1016/s1473-3099(24)00586-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Background</h3>Drug-resistant tuberculosis remains a major obstacle in ending the global tuberculosis epidemic. Deployment of molecular tools for comprehensive drug resistance profiling is imperative for successful detection and characterisation of tuberculosis drug resistance. We aimed to assess the diagnostic accuracy of a new class of molecular diagnostics for drug-resistant tuberculosis.<h3>Methods</h3>We conducted a prospective, cross-sectional, multicentre clinical evaluation of the performance of two targeted next-generation sequencing (tNGS) assays for drug-resistant tuberculosis at reference laboratories in three countries (Georgia, India, and South Africa) to assess diagnostic accuracy and index test failure rates. Eligible participants were aged 18 years or older, with molecularly confirmed pulmonary tuberculosis, and at risk for rifampicin-resistant tuberculosis. Sensitivity and specificity for both tNGS index tests (GenoScreen Deeplex Myc-TB and Oxford Nanopore Technologies [ONT] Tuberculosis Drug Resistance Test) were calculated for rifampicin, isoniazid, fluoroquinolones (moxifloxacin, levofloxacin), second line-injectables (amikacin, kanamycin, capreomycin), pyrazinamide, bedaquiline, linezolid, clofazimine, ethambutol, and streptomycin against a composite reference standard of phenotypic drug susceptibility testing and whole-genome sequencing.<h3>Findings</h3>Between April 1, 2021, and June 30, 2022, 832 individuals were invited to participate in the study, of whom 720 were included in the final analysis (212, 376, and 132 participants in Georgia, India, and South Africa, respectively). Of 720 clinical sediment samples evaluated, 658 (91%) and 684 (95%) produced complete or partial results on the GenoScreen and ONT tNGS workflows, respectively, with 593 (96%) and 603 (98%) of 616 smear-positive samples producing tNGS sequence data. Both workflows had sensitivities and specificities of more than 95% for rifampicin and isoniazid, and high accuracy for fluoroquinolones (sensitivity approximately ≥94%) and second line-injectables (sensitivity 80%) compared with the composite reference standard. Importantly, these assays also detected mutations associated with resistance to critical new and repurposed drugs (bedaquiline, linezolid) not currently detectable by any other WHO-recommended rapid diagnostics on the market. We note that the current format of assays have low sensitivity (≤50%) for linezolid and more work on mutations associated with drug resistance is needed.<h3>Interpretation</h3>This multicentre evaluation demonstrates that culture-free tNGS can provide accurate sequencing results for detection and characterisation of drug resistance from <em>Mycobacterium tuberculosis</em> clinical sediment samples for timely, comprehensive profiling of drug-resistant tuberculosis.<h3>Funding</h3>Unitaid.\",\"PeriodicalId\":49923,\"journal\":{\"name\":\"Lancet Infectious Diseases\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":36.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lancet Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/s1473-3099(24)00586-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/s1473-3099(24)00586-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Evaluating culture-free targeted next-generation sequencing for diagnosing drug-resistant tuberculosis: a multicentre clinical study of two end-to-end commercial workflows
Background
Drug-resistant tuberculosis remains a major obstacle in ending the global tuberculosis epidemic. Deployment of molecular tools for comprehensive drug resistance profiling is imperative for successful detection and characterisation of tuberculosis drug resistance. We aimed to assess the diagnostic accuracy of a new class of molecular diagnostics for drug-resistant tuberculosis.
Methods
We conducted a prospective, cross-sectional, multicentre clinical evaluation of the performance of two targeted next-generation sequencing (tNGS) assays for drug-resistant tuberculosis at reference laboratories in three countries (Georgia, India, and South Africa) to assess diagnostic accuracy and index test failure rates. Eligible participants were aged 18 years or older, with molecularly confirmed pulmonary tuberculosis, and at risk for rifampicin-resistant tuberculosis. Sensitivity and specificity for both tNGS index tests (GenoScreen Deeplex Myc-TB and Oxford Nanopore Technologies [ONT] Tuberculosis Drug Resistance Test) were calculated for rifampicin, isoniazid, fluoroquinolones (moxifloxacin, levofloxacin), second line-injectables (amikacin, kanamycin, capreomycin), pyrazinamide, bedaquiline, linezolid, clofazimine, ethambutol, and streptomycin against a composite reference standard of phenotypic drug susceptibility testing and whole-genome sequencing.
Findings
Between April 1, 2021, and June 30, 2022, 832 individuals were invited to participate in the study, of whom 720 were included in the final analysis (212, 376, and 132 participants in Georgia, India, and South Africa, respectively). Of 720 clinical sediment samples evaluated, 658 (91%) and 684 (95%) produced complete or partial results on the GenoScreen and ONT tNGS workflows, respectively, with 593 (96%) and 603 (98%) of 616 smear-positive samples producing tNGS sequence data. Both workflows had sensitivities and specificities of more than 95% for rifampicin and isoniazid, and high accuracy for fluoroquinolones (sensitivity approximately ≥94%) and second line-injectables (sensitivity 80%) compared with the composite reference standard. Importantly, these assays also detected mutations associated with resistance to critical new and repurposed drugs (bedaquiline, linezolid) not currently detectable by any other WHO-recommended rapid diagnostics on the market. We note that the current format of assays have low sensitivity (≤50%) for linezolid and more work on mutations associated with drug resistance is needed.
Interpretation
This multicentre evaluation demonstrates that culture-free tNGS can provide accurate sequencing results for detection and characterisation of drug resistance from Mycobacterium tuberculosis clinical sediment samples for timely, comprehensive profiling of drug-resistant tuberculosis.
期刊介绍:
The Lancet Infectious Diseases was launched in August, 2001, and is a lively monthly journal of original research, review, opinion, and news covering international issues relevant to clinical infectious diseases specialists worldwide.The infectious diseases journal aims to be a world-leading publication, featuring original research that advocates change or sheds light on clinical practices related to infectious diseases. The journal prioritizes articles with the potential to impact clinical practice or influence perspectives. Content covers a wide range of topics, including anti-infective therapy and immunization, bacterial, viral, fungal, and parasitic infections, emerging infectious diseases, HIV/AIDS, malaria, tuberculosis, mycobacterial infections, infection control, infectious diseases epidemiology, neglected tropical diseases, and travel medicine. Informative reviews on any subject linked to infectious diseases and human health are also welcomed.