Yongjie Xu , Shixin Sun , Mingyue Wang , Wenzheng Shen , Lei Wang , Chunhuan Ren , Yinghui Ling , Zijun Zhang , Hongguo Cao
{"title":"地塞米松和阿奇霉素通过调节脂质代谢提高山羊精子保存质量","authors":"Yongjie Xu , Shixin Sun , Mingyue Wang , Wenzheng Shen , Lei Wang , Chunhuan Ren , Yinghui Ling , Zijun Zhang , Hongguo Cao","doi":"10.1016/j.theriogenology.2024.10.025","DOIUrl":null,"url":null,"abstract":"<div><div>Phospholipase A (PLA) in goat semen aggregates with egg yolk in semen diluent, leading to sperm death. The aim of this study is to address the issue of sperm death caused by the interaction between PLA and egg yolk, and to explore the protective effect and metabolic regulation mechanism of the combination of dexamethasone (DXMS) and azithromycin (AZM) on goat sperm under low temperature conditions. At a low temperature of 4 °C, different concentrations of DXMS were added to semen diluents containing 30 μg/mL AZM to detect the quality of goat sperm. The optimal concentration of DXMS was determined to be 20 μg/mL. On the 5th day of storage, antioxidant capacity, total cholesterol (TC) levels, energy metabolism, and metabolomics analysis were performed on the sperm of the 20 μg/mL DXMS group. The results showed that there was no aggregation caused by the interaction between PLA and egg yolk in the group containing 30 μg/mL AZM at 4 °C. 20 μg/mL DXMS significantly improved sperm motility, plasma membrane integrity, acrosome integrity, glutathione peroxidase (GPX) (P < 0.05), catalase (CAT) (P < 0.01), and superoxide dismutase (SOD) activity (P < 0.01). The content of reactive oxygen species (ROS) and Fe<sup>2+</sup> significantly decreased (P < 0.01), while the content of ATP (P < 0.01) and TC (P < 0.05) significantly increased. Through metabolomics analysis, a total of 56 differential metabolites (P < 0.05) were screened, including 5a, 6-Anhydrotetracycline, Betamethasone, and 11-Dehydrocorticosterone, mainly enriched in 8 metabolic pathways (P < 0.05), including steroid hormone biosynthesis, glycerophospholipid metabolism, and choline metabolism in cancer. Among them, 5 metabolic pathways are related to lipid metabolism. The results indicate that AZM effectively inhibits the aggregation of PLA and yolk, and the combination of AZM and DXMS enhances the preservation quality of goat sperm during low-temperature preservation by regulating lipid metabolism.</div></div>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":"231 ","pages":"Pages 197-209"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dexamethasone and azithromycin enhance goat sperm preservation quality by regulating lipid metabolism\",\"authors\":\"Yongjie Xu , Shixin Sun , Mingyue Wang , Wenzheng Shen , Lei Wang , Chunhuan Ren , Yinghui Ling , Zijun Zhang , Hongguo Cao\",\"doi\":\"10.1016/j.theriogenology.2024.10.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Phospholipase A (PLA) in goat semen aggregates with egg yolk in semen diluent, leading to sperm death. The aim of this study is to address the issue of sperm death caused by the interaction between PLA and egg yolk, and to explore the protective effect and metabolic regulation mechanism of the combination of dexamethasone (DXMS) and azithromycin (AZM) on goat sperm under low temperature conditions. At a low temperature of 4 °C, different concentrations of DXMS were added to semen diluents containing 30 μg/mL AZM to detect the quality of goat sperm. The optimal concentration of DXMS was determined to be 20 μg/mL. On the 5th day of storage, antioxidant capacity, total cholesterol (TC) levels, energy metabolism, and metabolomics analysis were performed on the sperm of the 20 μg/mL DXMS group. The results showed that there was no aggregation caused by the interaction between PLA and egg yolk in the group containing 30 μg/mL AZM at 4 °C. 20 μg/mL DXMS significantly improved sperm motility, plasma membrane integrity, acrosome integrity, glutathione peroxidase (GPX) (P < 0.05), catalase (CAT) (P < 0.01), and superoxide dismutase (SOD) activity (P < 0.01). The content of reactive oxygen species (ROS) and Fe<sup>2+</sup> significantly decreased (P < 0.01), while the content of ATP (P < 0.01) and TC (P < 0.05) significantly increased. Through metabolomics analysis, a total of 56 differential metabolites (P < 0.05) were screened, including 5a, 6-Anhydrotetracycline, Betamethasone, and 11-Dehydrocorticosterone, mainly enriched in 8 metabolic pathways (P < 0.05), including steroid hormone biosynthesis, glycerophospholipid metabolism, and choline metabolism in cancer. Among them, 5 metabolic pathways are related to lipid metabolism. The results indicate that AZM effectively inhibits the aggregation of PLA and yolk, and the combination of AZM and DXMS enhances the preservation quality of goat sperm during low-temperature preservation by regulating lipid metabolism.</div></div>\",\"PeriodicalId\":23131,\"journal\":{\"name\":\"Theriogenology\",\"volume\":\"231 \",\"pages\":\"Pages 197-209\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theriogenology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093691X24004394\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theriogenology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093691X24004394","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
Dexamethasone and azithromycin enhance goat sperm preservation quality by regulating lipid metabolism
Phospholipase A (PLA) in goat semen aggregates with egg yolk in semen diluent, leading to sperm death. The aim of this study is to address the issue of sperm death caused by the interaction between PLA and egg yolk, and to explore the protective effect and metabolic regulation mechanism of the combination of dexamethasone (DXMS) and azithromycin (AZM) on goat sperm under low temperature conditions. At a low temperature of 4 °C, different concentrations of DXMS were added to semen diluents containing 30 μg/mL AZM to detect the quality of goat sperm. The optimal concentration of DXMS was determined to be 20 μg/mL. On the 5th day of storage, antioxidant capacity, total cholesterol (TC) levels, energy metabolism, and metabolomics analysis were performed on the sperm of the 20 μg/mL DXMS group. The results showed that there was no aggregation caused by the interaction between PLA and egg yolk in the group containing 30 μg/mL AZM at 4 °C. 20 μg/mL DXMS significantly improved sperm motility, plasma membrane integrity, acrosome integrity, glutathione peroxidase (GPX) (P < 0.05), catalase (CAT) (P < 0.01), and superoxide dismutase (SOD) activity (P < 0.01). The content of reactive oxygen species (ROS) and Fe2+ significantly decreased (P < 0.01), while the content of ATP (P < 0.01) and TC (P < 0.05) significantly increased. Through metabolomics analysis, a total of 56 differential metabolites (P < 0.05) were screened, including 5a, 6-Anhydrotetracycline, Betamethasone, and 11-Dehydrocorticosterone, mainly enriched in 8 metabolic pathways (P < 0.05), including steroid hormone biosynthesis, glycerophospholipid metabolism, and choline metabolism in cancer. Among them, 5 metabolic pathways are related to lipid metabolism. The results indicate that AZM effectively inhibits the aggregation of PLA and yolk, and the combination of AZM and DXMS enhances the preservation quality of goat sperm during low-temperature preservation by regulating lipid metabolism.
期刊介绍:
Theriogenology provides an international forum for researchers, clinicians, and industry professionals in animal reproductive biology. This acclaimed journal publishes articles on a wide range of topics in reproductive and developmental biology, of domestic mammal, avian, and aquatic species as well as wild species which are the object of veterinary care in research or conservation programs.