水溶液中二氧化硅球形纳米粒子尺寸效应的计算研究。

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Modeling Pub Date : 2024-11-14 DOI:10.1007/s00894-024-06195-6
Carlos A. Pérez-Tovar, Raiza Hernández-Bravo, José G. Parra, Nayeli Camacho, Jimmy Castillo, Vladimiro Mujica
{"title":"水溶液中二氧化硅球形纳米粒子尺寸效应的计算研究。","authors":"Carlos A. Pérez-Tovar,&nbsp;Raiza Hernández-Bravo,&nbsp;José G. Parra,&nbsp;Nayeli Camacho,&nbsp;Jimmy Castillo,&nbsp;Vladimiro Mujica","doi":"10.1007/s00894-024-06195-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>This study comprehensively describes the interaction between SiO<sub>2</sub> spherical nanoparticles and water molecules as a solvent medium. Our goal is to provide valuable insights into the significance of nanoparticle size in understanding their behavior and the resulting changes in the physical properties of materials. Our results indicate that SiO<sub>2</sub> nanoparticles exhibit a strong affinity for water, which increases with the nanoparticle size. Our investigation can be relevant for the design of new composite materials with applications ranging from medical prostheses to quantum electronics, optoelectronic devices, catalysis, and photoluminescence. We have concentrated on the study of the amorphous, where size effects seem to be more pronounced.</p><h3>Methods</h3><p>A computational study was carried out within the molecular dynamics simulations framework available in the GROMACS-v2019.2 software, with force fields consistent with DFT and the CHARMM36 utilized in the molecular description of the systems. The water model used was the TIP3P implemented in CHARMM36 force fields. A comprehensive analysis of molecular interactions of various system configurations was performed, including radial distribution function (RDF), mean square displacement (RMSD), hydrogen bonding analysis, interfacial analysis, and studying system size's effect on mechanical properties.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computational study of the size effect of SiO2 spherical nanoparticles in water solvent\",\"authors\":\"Carlos A. Pérez-Tovar,&nbsp;Raiza Hernández-Bravo,&nbsp;José G. Parra,&nbsp;Nayeli Camacho,&nbsp;Jimmy Castillo,&nbsp;Vladimiro Mujica\",\"doi\":\"10.1007/s00894-024-06195-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>This study comprehensively describes the interaction between SiO<sub>2</sub> spherical nanoparticles and water molecules as a solvent medium. Our goal is to provide valuable insights into the significance of nanoparticle size in understanding their behavior and the resulting changes in the physical properties of materials. Our results indicate that SiO<sub>2</sub> nanoparticles exhibit a strong affinity for water, which increases with the nanoparticle size. Our investigation can be relevant for the design of new composite materials with applications ranging from medical prostheses to quantum electronics, optoelectronic devices, catalysis, and photoluminescence. We have concentrated on the study of the amorphous, where size effects seem to be more pronounced.</p><h3>Methods</h3><p>A computational study was carried out within the molecular dynamics simulations framework available in the GROMACS-v2019.2 software, with force fields consistent with DFT and the CHARMM36 utilized in the molecular description of the systems. The water model used was the TIP3P implemented in CHARMM36 force fields. A comprehensive analysis of molecular interactions of various system configurations was performed, including radial distribution function (RDF), mean square displacement (RMSD), hydrogen bonding analysis, interfacial analysis, and studying system size's effect on mechanical properties.</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"30 12\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06195-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06195-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:本研究全面描述了二氧化硅球形纳米粒子与作为溶剂介质的水分子之间的相互作用。我们的目标是提供有价值的见解,让人们了解纳米粒子的大小对理解其行为以及由此引起的材料物理性质变化的重要意义。我们的研究结果表明,二氧化硅纳米粒子对水具有很强的亲和力,这种亲和力随着纳米粒子尺寸的增大而增大。我们的研究可用于设计新型复合材料,其应用范围包括医疗假体、量子电子学、光电器件、催化和光致发光。我们集中研究了非晶体,其尺寸效应似乎更为明显:我们在 GROMACS-v2019.2 软件提供的分子动力学模拟框架内进行了计算研究,在系统的分子描述中使用了与 DFT 和 CHARMM36 一致的力场。使用的水模型是在 CHARMM36 力场中实现的 TIP3P。对各种体系构型的分子相互作用进行了综合分析,包括径向分布函数(RDF)、均方位移(RMSD)、氢键分析、界面分析,以及研究体系尺寸对力学性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A computational study of the size effect of SiO2 spherical nanoparticles in water solvent

Context

This study comprehensively describes the interaction between SiO2 spherical nanoparticles and water molecules as a solvent medium. Our goal is to provide valuable insights into the significance of nanoparticle size in understanding their behavior and the resulting changes in the physical properties of materials. Our results indicate that SiO2 nanoparticles exhibit a strong affinity for water, which increases with the nanoparticle size. Our investigation can be relevant for the design of new composite materials with applications ranging from medical prostheses to quantum electronics, optoelectronic devices, catalysis, and photoluminescence. We have concentrated on the study of the amorphous, where size effects seem to be more pronounced.

Methods

A computational study was carried out within the molecular dynamics simulations framework available in the GROMACS-v2019.2 software, with force fields consistent with DFT and the CHARMM36 utilized in the molecular description of the systems. The water model used was the TIP3P implemented in CHARMM36 force fields. A comprehensive analysis of molecular interactions of various system configurations was performed, including radial distribution function (RDF), mean square displacement (RMSD), hydrogen bonding analysis, interfacial analysis, and studying system size's effect on mechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
期刊最新文献
Insight into the structural and dynamic properties of novel HSP90 inhibitors through DFT calculations and molecular dynamics simulations Improved energy equations and thermal functions for diatomic molecules: a generalized fractional derivative approach NO2 properties that affect its reaction with pristine and Pt-doped SnS2: a gas sensor study Theoretical study of the synergistic effect between glyceryl monooleate lubricant and carboxymethylcellulose in reducing the coefficient of friction of water-based drilling fluids Constructing, in silico, molecular self-aggregates and micro-hydrated complexes of oxirene and thiirene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1