通过结构粘合剂连接的添加剂制造和标准聚合物部件的机械强度。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2024-10-29 DOI:10.3390/polym16213036
Andrea Spaggiari, Simone Orlandini
{"title":"通过结构粘合剂连接的添加剂制造和标准聚合物部件的机械强度。","authors":"Andrea Spaggiari, Simone Orlandini","doi":"10.3390/polym16213036","DOIUrl":null,"url":null,"abstract":"<p><p>The main aim of this work is to evaluate the mechanical properties of additive manufactured polymeric parts joined with standard plastic parts through structural adhesives. The primary advantage of this technique is its ability to significantly increase the size of the final assembly by using additive manufacturing (AM) for complex joints and inexpensive, reliable extruded plastic parts for load-bearing components. This hybrid assembly combines the flexibility and shape adaptability of AM with the structural strength and cost-effectiveness of extruded polymer parts, resulting in a final design that performs comparably to the base material. The materials used in the paper are rigid acrylic adhesive and toughened acrylic, both applicable with almost no surface preparation and fast curing. The 3D-printed parts are produced in ABS, while the standard parts are in PVC. First, the work is devoted to estimating the performance of the adhesives using pin-collar joints and a combined numerical and experimental methodology. The second section presents and discusses the results of two more realistic applications of adhesive bonding to hybrid complex joints. For the pin-collar joints, the results show failure mostly in the adhesive, with an average shear stress of 11.5 MPa and 5.22 MPa and a stiffness of 4449 N/mm and 3649 N/mm for the rigid and toughened adhesives, respectively. The results of the adhesive bonding of structural joints show that the adhesive is always capable of providing the load-carrying capacity required to achieve the strength of traditionally manufactured polymeric parts. The paper shows that adhesives are a feasible way to expand the potential of 3D-printed equipment to obtain larger hybrid parts partially realized with traditional technology, especially with inexpensive off-the-shelf bars and sections.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548706/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanical Strength of Additive Manufactured and Standard Polymeric Components Joined Through Structural Adhesives.\",\"authors\":\"Andrea Spaggiari, Simone Orlandini\",\"doi\":\"10.3390/polym16213036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The main aim of this work is to evaluate the mechanical properties of additive manufactured polymeric parts joined with standard plastic parts through structural adhesives. The primary advantage of this technique is its ability to significantly increase the size of the final assembly by using additive manufacturing (AM) for complex joints and inexpensive, reliable extruded plastic parts for load-bearing components. This hybrid assembly combines the flexibility and shape adaptability of AM with the structural strength and cost-effectiveness of extruded polymer parts, resulting in a final design that performs comparably to the base material. The materials used in the paper are rigid acrylic adhesive and toughened acrylic, both applicable with almost no surface preparation and fast curing. The 3D-printed parts are produced in ABS, while the standard parts are in PVC. First, the work is devoted to estimating the performance of the adhesives using pin-collar joints and a combined numerical and experimental methodology. The second section presents and discusses the results of two more realistic applications of adhesive bonding to hybrid complex joints. For the pin-collar joints, the results show failure mostly in the adhesive, with an average shear stress of 11.5 MPa and 5.22 MPa and a stiffness of 4449 N/mm and 3649 N/mm for the rigid and toughened adhesives, respectively. The results of the adhesive bonding of structural joints show that the adhesive is always capable of providing the load-carrying capacity required to achieve the strength of traditionally manufactured polymeric parts. The paper shows that adhesives are a feasible way to expand the potential of 3D-printed equipment to obtain larger hybrid parts partially realized with traditional technology, especially with inexpensive off-the-shelf bars and sections.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"16 21\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym16213036\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16213036","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的主要目的是评估通过结构粘合剂与标准塑料部件连接的增材制造聚合物部件的机械性能。这种技术的主要优点是能够通过使用增材制造(AM)制造复杂的接合点,并使用廉价、可靠的挤压塑料部件制造承重部件,从而显著增大最终组件的尺寸。这种混合组件结合了 AM 的灵活性和形状适应性,以及挤压聚合物部件的结构强度和成本效益,最终设计的性能与基础材料相当。论文中使用的材料是硬质丙烯酸粘合剂和增韧丙烯酸,这两种材料几乎无需进行表面处理即可快速固化。3D 打印部件采用 ABS 材料,而标准部件则采用 PVC 材料。首先,本文采用针领接缝和数值与实验相结合的方法来估算粘合剂的性能。第二部分介绍并讨论了粘合剂在混合复杂接头中两种更实际应用的结果。对于针领接头,结果显示主要是粘合剂失效,刚性粘合剂和增韧粘合剂的平均剪应力分别为 11.5 兆帕和 5.22 兆帕,刚度分别为 4449 牛顿/毫米和 3649 牛顿/毫米。结构接缝的粘合结果表明,粘合剂始终能够提供达到传统制造的聚合物部件强度所需的承载能力。论文表明,粘合剂是扩大 3D 打印设备潜力的一种可行方法,可获得较大的混合零件,而这些零件部分是用传统技术实现的,特别是使用廉价的现成杆件和型材。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical Strength of Additive Manufactured and Standard Polymeric Components Joined Through Structural Adhesives.

The main aim of this work is to evaluate the mechanical properties of additive manufactured polymeric parts joined with standard plastic parts through structural adhesives. The primary advantage of this technique is its ability to significantly increase the size of the final assembly by using additive manufacturing (AM) for complex joints and inexpensive, reliable extruded plastic parts for load-bearing components. This hybrid assembly combines the flexibility and shape adaptability of AM with the structural strength and cost-effectiveness of extruded polymer parts, resulting in a final design that performs comparably to the base material. The materials used in the paper are rigid acrylic adhesive and toughened acrylic, both applicable with almost no surface preparation and fast curing. The 3D-printed parts are produced in ABS, while the standard parts are in PVC. First, the work is devoted to estimating the performance of the adhesives using pin-collar joints and a combined numerical and experimental methodology. The second section presents and discusses the results of two more realistic applications of adhesive bonding to hybrid complex joints. For the pin-collar joints, the results show failure mostly in the adhesive, with an average shear stress of 11.5 MPa and 5.22 MPa and a stiffness of 4449 N/mm and 3649 N/mm for the rigid and toughened adhesives, respectively. The results of the adhesive bonding of structural joints show that the adhesive is always capable of providing the load-carrying capacity required to achieve the strength of traditionally manufactured polymeric parts. The paper shows that adhesives are a feasible way to expand the potential of 3D-printed equipment to obtain larger hybrid parts partially realized with traditional technology, especially with inexpensive off-the-shelf bars and sections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Influence of Hydroxyapatite and Gelatin Content on Crosslinking Dynamics and HDFn Cell Viability in Alginate Bioinks for 3D Bioprinting. The Confinement Behavior and Mechanistic Insights of Organic Phase Change Material Encapsulated in Wood Morphology Genetic Nanostructures for Thermal Energy Storage. The Effect of Synthetic Zeolite on the Curing Process and the Properties of the Natural Rubber-Based Composites. Co-Optimization of Mechanical Properties and Radiopacity Through Radiopaque Filler Incorporation for Medical Tubing Applications. Nanostructure-Dependent Electrical Conductivity Model Within the Framework of the Generalized Effective Medium Theory Applied to Poly(3-hexyl)thiophene Thin Films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1