Sehwan Kim, Chanchal Sharma, Jungwan Hong, Jong-Heon Kim, Youngpyo Nam, Min Sung Kim, Tae Yong Lee, Kyung-Suk Kim, Kyoungho Suk, Ho-Won Lee, Sang Ryong Kim
{"title":"在 SCA2 小鼠无症状后给予 hMSCs 具有治疗效果。","authors":"Sehwan Kim, Chanchal Sharma, Jungwan Hong, Jong-Heon Kim, Youngpyo Nam, Min Sung Kim, Tae Yong Lee, Kyung-Suk Kim, Kyoungho Suk, Ho-Won Lee, Sang Ryong Kim","doi":"10.1186/s13287-024-04020-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Defects in the ataxin-2 (ATXN-2) protein and CAG trinucleotide repeat expansion in its coding gene, Atxn-2, cause the neurodegenerative disorder spinocerebellar ataxia type 2 (SCA2). While clinical studies suggest potential benefits of human-derived mesenchymal stem cells (hMSCs) for treating various ataxias, the exact mechanisms underlying their therapeutic effects and interaction with host tissue to stimulate neurotrophin expression remain unclear specifically in the context of SCA2.</p><p><strong>Methods: </strong>Human bone marrow-derived MSCs (hMSCs) were injected into the cisterna magna of 26-week-old wild-type and SCA2 mice. Mice were assessed for impaired motor coordination using the accelerating rotarod, open field test, and composite phenotype scoring. At 50 weeks, the cerebellum vermis was harvested for protein assessment and immunohistochemical analysis.</p><p><strong>Results: </strong>Significant loss of NeuN and calbindin was observed in 25-week-old SCA2 mice. However, after receiving multiple injections of hMSCs starting at 26 weeks of age, these mice exhibited a significant improvement in abnormal motor performance and a protective effect on Purkinje cells. This beneficial effect persisted until the mice reached 50 weeks of age, at which point they were sacrificed to study further mechanistic events triggered by the administration of hMSCs. Calbindin-positive cells in the Purkinje cell layer expressed bone-derived neurotrophic factor after hMSC administration, contributing to the protection of cerebellar neurons from cell death.</p><p><strong>Conclusion: </strong>In conclusion, repeated administration of hMSCs shows promise in alleviating SCA2 symptoms by preserving Purkinje cells, improving neurotrophic support, and reducing inflammation, ultimately leading to the preservation of locomotor function in SCA2 mice.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"411"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550562/pdf/","citationCount":"0","resultStr":"{\"title\":\"Post-symptomatic administration of hMSCs exerts therapeutic effects in SCA2 mice.\",\"authors\":\"Sehwan Kim, Chanchal Sharma, Jungwan Hong, Jong-Heon Kim, Youngpyo Nam, Min Sung Kim, Tae Yong Lee, Kyung-Suk Kim, Kyoungho Suk, Ho-Won Lee, Sang Ryong Kim\",\"doi\":\"10.1186/s13287-024-04020-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Defects in the ataxin-2 (ATXN-2) protein and CAG trinucleotide repeat expansion in its coding gene, Atxn-2, cause the neurodegenerative disorder spinocerebellar ataxia type 2 (SCA2). While clinical studies suggest potential benefits of human-derived mesenchymal stem cells (hMSCs) for treating various ataxias, the exact mechanisms underlying their therapeutic effects and interaction with host tissue to stimulate neurotrophin expression remain unclear specifically in the context of SCA2.</p><p><strong>Methods: </strong>Human bone marrow-derived MSCs (hMSCs) were injected into the cisterna magna of 26-week-old wild-type and SCA2 mice. Mice were assessed for impaired motor coordination using the accelerating rotarod, open field test, and composite phenotype scoring. At 50 weeks, the cerebellum vermis was harvested for protein assessment and immunohistochemical analysis.</p><p><strong>Results: </strong>Significant loss of NeuN and calbindin was observed in 25-week-old SCA2 mice. However, after receiving multiple injections of hMSCs starting at 26 weeks of age, these mice exhibited a significant improvement in abnormal motor performance and a protective effect on Purkinje cells. This beneficial effect persisted until the mice reached 50 weeks of age, at which point they were sacrificed to study further mechanistic events triggered by the administration of hMSCs. Calbindin-positive cells in the Purkinje cell layer expressed bone-derived neurotrophic factor after hMSC administration, contributing to the protection of cerebellar neurons from cell death.</p><p><strong>Conclusion: </strong>In conclusion, repeated administration of hMSCs shows promise in alleviating SCA2 symptoms by preserving Purkinje cells, improving neurotrophic support, and reducing inflammation, ultimately leading to the preservation of locomotor function in SCA2 mice.</p>\",\"PeriodicalId\":21876,\"journal\":{\"name\":\"Stem Cell Research & Therapy\",\"volume\":\"15 1\",\"pages\":\"411\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550562/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13287-024-04020-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-024-04020-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Post-symptomatic administration of hMSCs exerts therapeutic effects in SCA2 mice.
Background: Defects in the ataxin-2 (ATXN-2) protein and CAG trinucleotide repeat expansion in its coding gene, Atxn-2, cause the neurodegenerative disorder spinocerebellar ataxia type 2 (SCA2). While clinical studies suggest potential benefits of human-derived mesenchymal stem cells (hMSCs) for treating various ataxias, the exact mechanisms underlying their therapeutic effects and interaction with host tissue to stimulate neurotrophin expression remain unclear specifically in the context of SCA2.
Methods: Human bone marrow-derived MSCs (hMSCs) were injected into the cisterna magna of 26-week-old wild-type and SCA2 mice. Mice were assessed for impaired motor coordination using the accelerating rotarod, open field test, and composite phenotype scoring. At 50 weeks, the cerebellum vermis was harvested for protein assessment and immunohistochemical analysis.
Results: Significant loss of NeuN and calbindin was observed in 25-week-old SCA2 mice. However, after receiving multiple injections of hMSCs starting at 26 weeks of age, these mice exhibited a significant improvement in abnormal motor performance and a protective effect on Purkinje cells. This beneficial effect persisted until the mice reached 50 weeks of age, at which point they were sacrificed to study further mechanistic events triggered by the administration of hMSCs. Calbindin-positive cells in the Purkinje cell layer expressed bone-derived neurotrophic factor after hMSC administration, contributing to the protection of cerebellar neurons from cell death.
Conclusion: In conclusion, repeated administration of hMSCs shows promise in alleviating SCA2 symptoms by preserving Purkinje cells, improving neurotrophic support, and reducing inflammation, ultimately leading to the preservation of locomotor function in SCA2 mice.
期刊介绍:
Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.