WAC 通过保护 PINK1 免受泛素依赖性降解,促进有丝分裂介导的间充质干细胞成骨和新骨形成

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-11-18 DOI:10.1002/advs.202404107
Shuai Fan, Jinteng Li, Guan Zheng, Ziyue Ma, Xiaoshuai Peng, Zhongyu Xie, Wenjie Liu, Wenhui Yu, Jiajie Lin, Zepeng Su, Peitao Xu, Peng Wang, Yanfeng Wu, Huiyong Shen, Guiwen Ye
{"title":"WAC 通过保护 PINK1 免受泛素依赖性降解,促进有丝分裂介导的间充质干细胞成骨和新骨形成","authors":"Shuai Fan, Jinteng Li, Guan Zheng, Ziyue Ma, Xiaoshuai Peng, Zhongyu Xie, Wenjie Liu, Wenhui Yu, Jiajie Lin, Zepeng Su, Peitao Xu, Peng Wang, Yanfeng Wu, Huiyong Shen, Guiwen Ye","doi":"10.1002/advs.202404107","DOIUrl":null,"url":null,"abstract":"<p><p>Osteogenic differentiation of mesenchymal stem cells (MSCs) plays a pivotal role in the pathogenesis and treatment of bone-related conditions such as osteoporosis and bone regeneration. While the WW domain-containing coiled-coil adaptor (WAC) protein is primarily associated with transcriptional regulation and autophagy, its involvement in MSC osteogenesis remains unclear. Here, the data reveal that the levels of WAC are diminished in both osteoporosis patients and osteoporosis mouse models. It plays a pivotal function in facilitating MSC osteogenesis and enhancing new bone formation both in vitro and in vivo. Mechanistically, WAC promotes MSC osteogenesis by protecting PINK1, a crucial initiator of mitophagy, from ubiquitination-dependent degradation thereby activating mitophagy. Interestingly, WAC interacts with the TM domains of PINK1 and prevents the K137 site from ubiquitination modification. The study elucidates the mechanism by which WAC modulates MSC osteogenesis, binds to PINK1 to protect it from ubiquitination, and identifies potential therapeutic targets for osteoporosis and bone defect repair.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2404107"},"PeriodicalIF":14.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WAC Facilitates Mitophagy-mediated MSC Osteogenesis and New Bone Formation via Protecting PINK1 from Ubiquitination-Dependent Degradation.\",\"authors\":\"Shuai Fan, Jinteng Li, Guan Zheng, Ziyue Ma, Xiaoshuai Peng, Zhongyu Xie, Wenjie Liu, Wenhui Yu, Jiajie Lin, Zepeng Su, Peitao Xu, Peng Wang, Yanfeng Wu, Huiyong Shen, Guiwen Ye\",\"doi\":\"10.1002/advs.202404107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteogenic differentiation of mesenchymal stem cells (MSCs) plays a pivotal role in the pathogenesis and treatment of bone-related conditions such as osteoporosis and bone regeneration. While the WW domain-containing coiled-coil adaptor (WAC) protein is primarily associated with transcriptional regulation and autophagy, its involvement in MSC osteogenesis remains unclear. Here, the data reveal that the levels of WAC are diminished in both osteoporosis patients and osteoporosis mouse models. It plays a pivotal function in facilitating MSC osteogenesis and enhancing new bone formation both in vitro and in vivo. Mechanistically, WAC promotes MSC osteogenesis by protecting PINK1, a crucial initiator of mitophagy, from ubiquitination-dependent degradation thereby activating mitophagy. Interestingly, WAC interacts with the TM domains of PINK1 and prevents the K137 site from ubiquitination modification. The study elucidates the mechanism by which WAC modulates MSC osteogenesis, binds to PINK1 to protect it from ubiquitination, and identifies potential therapeutic targets for osteoporosis and bone defect repair.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2404107\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202404107\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202404107","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

间充质干细胞(MSCs)的成骨分化在骨质疏松症和骨再生等骨相关疾病的发病和治疗中起着关键作用。虽然含WW结构域的盘卷适配体(WAC)蛋白主要与转录调控和自噬有关,但其在间充质干细胞成骨过程中的参与仍不清楚。本文的数据显示,在骨质疏松症患者和骨质疏松症小鼠模型中,WAC 的水平都有所降低。它在体外和体内促进间充质干细胞成骨和增强新骨形成方面发挥着关键作用。从机制上讲,WAC 通过保护有丝分裂的关键启动子 PINK1 免受泛素依赖性降解,从而激活有丝分裂,促进间充质干细胞的成骨。有趣的是,WAC与PINK1的TM结构域相互作用,阻止了K137位点的泛素化修饰。该研究阐明了WAC调节间充质干细胞成骨、与PINK1结合以保护其免受泛素化的机制,并确定了骨质疏松症和骨缺损修复的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WAC Facilitates Mitophagy-mediated MSC Osteogenesis and New Bone Formation via Protecting PINK1 from Ubiquitination-Dependent Degradation.

Osteogenic differentiation of mesenchymal stem cells (MSCs) plays a pivotal role in the pathogenesis and treatment of bone-related conditions such as osteoporosis and bone regeneration. While the WW domain-containing coiled-coil adaptor (WAC) protein is primarily associated with transcriptional regulation and autophagy, its involvement in MSC osteogenesis remains unclear. Here, the data reveal that the levels of WAC are diminished in both osteoporosis patients and osteoporosis mouse models. It plays a pivotal function in facilitating MSC osteogenesis and enhancing new bone formation both in vitro and in vivo. Mechanistically, WAC promotes MSC osteogenesis by protecting PINK1, a crucial initiator of mitophagy, from ubiquitination-dependent degradation thereby activating mitophagy. Interestingly, WAC interacts with the TM domains of PINK1 and prevents the K137 site from ubiquitination modification. The study elucidates the mechanism by which WAC modulates MSC osteogenesis, binds to PINK1 to protect it from ubiquitination, and identifies potential therapeutic targets for osteoporosis and bone defect repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Near-Isotropic, Extreme-Stiffness, Continuous 3D Mechanical Metamaterial Sequences Using Implicit Neural Representation. Possible Superconductivity Transition in Nitrogen-Doped Lutetium Hydride Observed at Megabar Pressure. Surface Modifications of Layered Perovskite Oxysulfide Photocatalyst Y2Ti2O5S2 to Enhance Visible-Light-Driven Water Splitting. Targeting the NOTCH2/ADAM10/TCF7L2 Axis-Mediated Transcriptional Regulation of Wnt Pathway Suppresses Tumor Growth and Enhances Chemosensitivity in Colorectal Cancer. Vector-Free Deep Tissue Targeting of DNA/RNA Therapeutics via Single Capacitive Discharge Conductivity-Clamped Gene Electrotransfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1