{"title":"WAC 通过保护 PINK1 免受泛素依赖性降解,促进有丝分裂介导的间充质干细胞成骨和新骨形成","authors":"Shuai Fan, Jinteng Li, Guan Zheng, Ziyue Ma, Xiaoshuai Peng, Zhongyu Xie, Wenjie Liu, Wenhui Yu, Jiajie Lin, Zepeng Su, Peitao Xu, Peng Wang, Yanfeng Wu, Huiyong Shen, Guiwen Ye","doi":"10.1002/advs.202404107","DOIUrl":null,"url":null,"abstract":"<p><p>Osteogenic differentiation of mesenchymal stem cells (MSCs) plays a pivotal role in the pathogenesis and treatment of bone-related conditions such as osteoporosis and bone regeneration. While the WW domain-containing coiled-coil adaptor (WAC) protein is primarily associated with transcriptional regulation and autophagy, its involvement in MSC osteogenesis remains unclear. Here, the data reveal that the levels of WAC are diminished in both osteoporosis patients and osteoporosis mouse models. It plays a pivotal function in facilitating MSC osteogenesis and enhancing new bone formation both in vitro and in vivo. Mechanistically, WAC promotes MSC osteogenesis by protecting PINK1, a crucial initiator of mitophagy, from ubiquitination-dependent degradation thereby activating mitophagy. Interestingly, WAC interacts with the TM domains of PINK1 and prevents the K137 site from ubiquitination modification. The study elucidates the mechanism by which WAC modulates MSC osteogenesis, binds to PINK1 to protect it from ubiquitination, and identifies potential therapeutic targets for osteoporosis and bone defect repair.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2404107"},"PeriodicalIF":14.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WAC Facilitates Mitophagy-mediated MSC Osteogenesis and New Bone Formation via Protecting PINK1 from Ubiquitination-Dependent Degradation.\",\"authors\":\"Shuai Fan, Jinteng Li, Guan Zheng, Ziyue Ma, Xiaoshuai Peng, Zhongyu Xie, Wenjie Liu, Wenhui Yu, Jiajie Lin, Zepeng Su, Peitao Xu, Peng Wang, Yanfeng Wu, Huiyong Shen, Guiwen Ye\",\"doi\":\"10.1002/advs.202404107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteogenic differentiation of mesenchymal stem cells (MSCs) plays a pivotal role in the pathogenesis and treatment of bone-related conditions such as osteoporosis and bone regeneration. While the WW domain-containing coiled-coil adaptor (WAC) protein is primarily associated with transcriptional regulation and autophagy, its involvement in MSC osteogenesis remains unclear. Here, the data reveal that the levels of WAC are diminished in both osteoporosis patients and osteoporosis mouse models. It plays a pivotal function in facilitating MSC osteogenesis and enhancing new bone formation both in vitro and in vivo. Mechanistically, WAC promotes MSC osteogenesis by protecting PINK1, a crucial initiator of mitophagy, from ubiquitination-dependent degradation thereby activating mitophagy. Interestingly, WAC interacts with the TM domains of PINK1 and prevents the K137 site from ubiquitination modification. The study elucidates the mechanism by which WAC modulates MSC osteogenesis, binds to PINK1 to protect it from ubiquitination, and identifies potential therapeutic targets for osteoporosis and bone defect repair.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2404107\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202404107\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202404107","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
WAC Facilitates Mitophagy-mediated MSC Osteogenesis and New Bone Formation via Protecting PINK1 from Ubiquitination-Dependent Degradation.
Osteogenic differentiation of mesenchymal stem cells (MSCs) plays a pivotal role in the pathogenesis and treatment of bone-related conditions such as osteoporosis and bone regeneration. While the WW domain-containing coiled-coil adaptor (WAC) protein is primarily associated with transcriptional regulation and autophagy, its involvement in MSC osteogenesis remains unclear. Here, the data reveal that the levels of WAC are diminished in both osteoporosis patients and osteoporosis mouse models. It plays a pivotal function in facilitating MSC osteogenesis and enhancing new bone formation both in vitro and in vivo. Mechanistically, WAC promotes MSC osteogenesis by protecting PINK1, a crucial initiator of mitophagy, from ubiquitination-dependent degradation thereby activating mitophagy. Interestingly, WAC interacts with the TM domains of PINK1 and prevents the K137 site from ubiquitination modification. The study elucidates the mechanism by which WAC modulates MSC osteogenesis, binds to PINK1 to protect it from ubiquitination, and identifies potential therapeutic targets for osteoporosis and bone defect repair.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.