Ya Zhang , Xiexiao Cai , Xiaojing Ma , Huanjuan Yan , Qifang Wu , Haibin Tong , Zhihai Zheng
{"title":"地拉韦酮通过抑制PKCδ介导的Nrf2磷酸化,在结直肠癌中引发氧化应激和铁变态反应。","authors":"Ya Zhang , Xiexiao Cai , Xiaojing Ma , Huanjuan Yan , Qifang Wu , Haibin Tong , Zhihai Zheng","doi":"10.1016/j.cbi.2024.111312","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroptosis is a potential therapeutic approach for colorectal cancer (CRC). Studies have shown that peimine and its analogs exhibit anti-cancer potential; however, the intricate relationship between ferroptosis and their efficacy in fighting CRC remains unclear. In this study, we attempted to assess the therapeutic impact of peimine and its analogs on CRC and unravel the underlying mechanisms. CRC cells and a DSS/AOM-induced CRC mouse model were employed for <em>in vitro</em> and <em>in vivo</em> experiments, molecular interactions and co-immunoprecipitation were used to identify target proteins. Among the compounds, delavinone significantly inhibited CRC cell proliferation and increased cellular lipid ROS levels, MDA accumulation, and GSH depletion; the ferroptosis inhibitors DFO and Fer-1 ameliorated delavinone-induced cell death. Mechanistically, delavinone impedes PKCδ-mediated Nrf2 phosphorylation by inhibiting the kinase activity of PKCδ, thereby decreasing Nrf2 nuclear translocation and downstream GSH synthesis-related gene expression. overexpression of GPX4 weakened the anticancer effect of delavinone, underscoring delavinone's inhibition of the PKCδ/Nrf2/GPX4 signaling axis and induction of ferroptosis in CRC cells. Consistent with <em>in vitro</em> findings, delavinone notably hindered AOM/DSS-induced colorectal carcinogenesis, exhibiting a pronounced pro-ferroptosis effect on CRC. This study delineates that delavinone exerts its anticancer activity by inducing ferroptosis through PKCδ inhibition, consequently reducing Nrf2 phosphorylation. These findings position delavinone as a promising candidate for CRC treatment.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"405 ","pages":"Article 111312"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delavinone elicits oxidative stress and triggers ferroptosis in colorectal cancer by inhibiting PKCδ-mediated phosphorylation of Nrf2\",\"authors\":\"Ya Zhang , Xiexiao Cai , Xiaojing Ma , Huanjuan Yan , Qifang Wu , Haibin Tong , Zhihai Zheng\",\"doi\":\"10.1016/j.cbi.2024.111312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ferroptosis is a potential therapeutic approach for colorectal cancer (CRC). Studies have shown that peimine and its analogs exhibit anti-cancer potential; however, the intricate relationship between ferroptosis and their efficacy in fighting CRC remains unclear. In this study, we attempted to assess the therapeutic impact of peimine and its analogs on CRC and unravel the underlying mechanisms. CRC cells and a DSS/AOM-induced CRC mouse model were employed for <em>in vitro</em> and <em>in vivo</em> experiments, molecular interactions and co-immunoprecipitation were used to identify target proteins. Among the compounds, delavinone significantly inhibited CRC cell proliferation and increased cellular lipid ROS levels, MDA accumulation, and GSH depletion; the ferroptosis inhibitors DFO and Fer-1 ameliorated delavinone-induced cell death. Mechanistically, delavinone impedes PKCδ-mediated Nrf2 phosphorylation by inhibiting the kinase activity of PKCδ, thereby decreasing Nrf2 nuclear translocation and downstream GSH synthesis-related gene expression. overexpression of GPX4 weakened the anticancer effect of delavinone, underscoring delavinone's inhibition of the PKCδ/Nrf2/GPX4 signaling axis and induction of ferroptosis in CRC cells. Consistent with <em>in vitro</em> findings, delavinone notably hindered AOM/DSS-induced colorectal carcinogenesis, exhibiting a pronounced pro-ferroptosis effect on CRC. This study delineates that delavinone exerts its anticancer activity by inducing ferroptosis through PKCδ inhibition, consequently reducing Nrf2 phosphorylation. These findings position delavinone as a promising candidate for CRC treatment.</div></div>\",\"PeriodicalId\":274,\"journal\":{\"name\":\"Chemico-Biological Interactions\",\"volume\":\"405 \",\"pages\":\"Article 111312\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemico-Biological Interactions\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009279724004587\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279724004587","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Delavinone elicits oxidative stress and triggers ferroptosis in colorectal cancer by inhibiting PKCδ-mediated phosphorylation of Nrf2
Ferroptosis is a potential therapeutic approach for colorectal cancer (CRC). Studies have shown that peimine and its analogs exhibit anti-cancer potential; however, the intricate relationship between ferroptosis and their efficacy in fighting CRC remains unclear. In this study, we attempted to assess the therapeutic impact of peimine and its analogs on CRC and unravel the underlying mechanisms. CRC cells and a DSS/AOM-induced CRC mouse model were employed for in vitro and in vivo experiments, molecular interactions and co-immunoprecipitation were used to identify target proteins. Among the compounds, delavinone significantly inhibited CRC cell proliferation and increased cellular lipid ROS levels, MDA accumulation, and GSH depletion; the ferroptosis inhibitors DFO and Fer-1 ameliorated delavinone-induced cell death. Mechanistically, delavinone impedes PKCδ-mediated Nrf2 phosphorylation by inhibiting the kinase activity of PKCδ, thereby decreasing Nrf2 nuclear translocation and downstream GSH synthesis-related gene expression. overexpression of GPX4 weakened the anticancer effect of delavinone, underscoring delavinone's inhibition of the PKCδ/Nrf2/GPX4 signaling axis and induction of ferroptosis in CRC cells. Consistent with in vitro findings, delavinone notably hindered AOM/DSS-induced colorectal carcinogenesis, exhibiting a pronounced pro-ferroptosis effect on CRC. This study delineates that delavinone exerts its anticancer activity by inducing ferroptosis through PKCδ inhibition, consequently reducing Nrf2 phosphorylation. These findings position delavinone as a promising candidate for CRC treatment.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.