Wentao Ni , Can Sheng , Bo Zhao , Zhiqiang Tian , Min Chen , Shizhao Wang , Gai Wu
{"title":"利用有限元分析对新型阶梯式混合粘接界面进行数值模拟","authors":"Wentao Ni , Can Sheng , Bo Zhao , Zhiqiang Tian , Min Chen , Shizhao Wang , Gai Wu","doi":"10.1016/j.mssp.2024.109082","DOIUrl":null,"url":null,"abstract":"<div><div>3D integration using advanced packaging and high-density chip stacking technologies has been seen as a key technological breakthrough to meet the market demand in the post-Moore era. In recent years, hybrid bonding (HB) has been regarded as a key technology for realizing high-density packaging due to its advantages such as smaller bonding space and faster electrical signal transmission. In this paper, a novel copper/polymer hybrid bonding structure is proposed, which can realize a stepped periodic bonding interface that has higher bonding strength compared with the traditional bonding interface and can effectively resist the interface failure caused by shear. The peeling stress of the bonding interface under different geometries, material parameters and process conditions is derived and compared by numerical simulation, and the risk of debonding is evaluated. It is shown that the novel structure can realize higher shear strength bonding within a wide window of process parameters.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"186 ","pages":"Article 109082"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of novel stepped hybrid bonding interface using finite element analysis\",\"authors\":\"Wentao Ni , Can Sheng , Bo Zhao , Zhiqiang Tian , Min Chen , Shizhao Wang , Gai Wu\",\"doi\":\"10.1016/j.mssp.2024.109082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>3D integration using advanced packaging and high-density chip stacking technologies has been seen as a key technological breakthrough to meet the market demand in the post-Moore era. In recent years, hybrid bonding (HB) has been regarded as a key technology for realizing high-density packaging due to its advantages such as smaller bonding space and faster electrical signal transmission. In this paper, a novel copper/polymer hybrid bonding structure is proposed, which can realize a stepped periodic bonding interface that has higher bonding strength compared with the traditional bonding interface and can effectively resist the interface failure caused by shear. The peeling stress of the bonding interface under different geometries, material parameters and process conditions is derived and compared by numerical simulation, and the risk of debonding is evaluated. It is shown that the novel structure can realize higher shear strength bonding within a wide window of process parameters.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"186 \",\"pages\":\"Article 109082\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800124009788\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124009788","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Numerical simulation of novel stepped hybrid bonding interface using finite element analysis
3D integration using advanced packaging and high-density chip stacking technologies has been seen as a key technological breakthrough to meet the market demand in the post-Moore era. In recent years, hybrid bonding (HB) has been regarded as a key technology for realizing high-density packaging due to its advantages such as smaller bonding space and faster electrical signal transmission. In this paper, a novel copper/polymer hybrid bonding structure is proposed, which can realize a stepped periodic bonding interface that has higher bonding strength compared with the traditional bonding interface and can effectively resist the interface failure caused by shear. The peeling stress of the bonding interface under different geometries, material parameters and process conditions is derived and compared by numerical simulation, and the risk of debonding is evaluated. It is shown that the novel structure can realize higher shear strength bonding within a wide window of process parameters.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.