Rodrigo Braz Teixeira, Giorgio Carugno, Izaak Neri, Pablo Sartori
{"title":"液体 Hopfield 模型:多组分液体混合物中的检索和定位。","authors":"Rodrigo Braz Teixeira, Giorgio Carugno, Izaak Neri, Pablo Sartori","doi":"10.1073/pnas.2320504121","DOIUrl":null,"url":null,"abstract":"<p><p>Biological mixtures, such as the cellular cytoplasm, are composed of a large number of different components. From this heterogeneity, ordered mesoscopic structures emerge, such as liquid phases with controlled composition. The competition of these structures for the same components raises several questions: what types of interactions allow the retrieval of multiple ordered mesoscopic structures, and what are the physical limitations for the retrieval of said structures. In this work, we develop an analytically tractable model for multicomponent liquids capable of retrieving states with target compositions. We name this model the liquid Hopfield model in reference to corresponding work in the theory of associative neural networks. In this model, we show that nonlinear repulsive interactions are a general requirement for retrieval of target structures. We demonstrate that this is because liquid mixtures at low temperatures tend to transition to phases with few components, a phenomenon that we term localization. Taken together, our results reveal a trade-off between retrieval and localization phenomena in liquid mixtures, and pave the way for other connections between the phenomenologies of neural computation and liquid mixtures.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 48","pages":"e2320504121"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid Hopfield model: Retrieval and localization in multicomponent liquid mixtures.\",\"authors\":\"Rodrigo Braz Teixeira, Giorgio Carugno, Izaak Neri, Pablo Sartori\",\"doi\":\"10.1073/pnas.2320504121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological mixtures, such as the cellular cytoplasm, are composed of a large number of different components. From this heterogeneity, ordered mesoscopic structures emerge, such as liquid phases with controlled composition. The competition of these structures for the same components raises several questions: what types of interactions allow the retrieval of multiple ordered mesoscopic structures, and what are the physical limitations for the retrieval of said structures. In this work, we develop an analytically tractable model for multicomponent liquids capable of retrieving states with target compositions. We name this model the liquid Hopfield model in reference to corresponding work in the theory of associative neural networks. In this model, we show that nonlinear repulsive interactions are a general requirement for retrieval of target structures. We demonstrate that this is because liquid mixtures at low temperatures tend to transition to phases with few components, a phenomenon that we term localization. Taken together, our results reveal a trade-off between retrieval and localization phenomena in liquid mixtures, and pave the way for other connections between the phenomenologies of neural computation and liquid mixtures.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"121 48\",\"pages\":\"e2320504121\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2320504121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2320504121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Liquid Hopfield model: Retrieval and localization in multicomponent liquid mixtures.
Biological mixtures, such as the cellular cytoplasm, are composed of a large number of different components. From this heterogeneity, ordered mesoscopic structures emerge, such as liquid phases with controlled composition. The competition of these structures for the same components raises several questions: what types of interactions allow the retrieval of multiple ordered mesoscopic structures, and what are the physical limitations for the retrieval of said structures. In this work, we develop an analytically tractable model for multicomponent liquids capable of retrieving states with target compositions. We name this model the liquid Hopfield model in reference to corresponding work in the theory of associative neural networks. In this model, we show that nonlinear repulsive interactions are a general requirement for retrieval of target structures. We demonstrate that this is because liquid mixtures at low temperatures tend to transition to phases with few components, a phenomenon that we term localization. Taken together, our results reveal a trade-off between retrieval and localization phenomena in liquid mixtures, and pave the way for other connections between the phenomenologies of neural computation and liquid mixtures.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.