{"title":"来自原始引力原子的随机引力波背景","authors":"Zhaofeng Kang, Tianjun Li and Weitao Ye","doi":"10.1088/1475-7516/2024/11/039","DOIUrl":null,"url":null,"abstract":"We propose a scenario of primordial gravitational atoms (PGAs), which may exist in the current and past universe due to spinning primordial black holes (PBHs) and very light bosonic fields. In a monochromatic mass scenario with a sizable dimensionless spin, which may arise in a short matter dominated (MD) era, we analyze the resulting stochastic gravitational wave background (SGWB) signal. Its spectrum is approximately characterized by a rising ∝ f3 followed by a falling ∝ f-1 where f is the frequency. Then, we investigate the constraints and prospects of such an SGWB, and find that PGAs with a core mass MBH ∼ 𝒪(10) M⊙ and a cloud of light scalar with mass μ ∼ 𝒪 (10-13) eV could yield constraints even stronger than those from bare PBHs. Future detectors such as LISA, Taiji and TianQin are able to explore PGAs over a narrow and elongated strap in the (μ,MBH) plane, spanning over 10 orders of magnitude for the maximum spin, 10-8M⊙ ≲ MBH ≲ 104M⊙, 10-16 eV ≲ μ ≲ 10-3 eV. If the PGA is dressed with a vector cloud, the SGWB signal has a much better opportunity to be probed.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"16 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The stochastic gravitational wave background from primordial gravitational atoms\",\"authors\":\"Zhaofeng Kang, Tianjun Li and Weitao Ye\",\"doi\":\"10.1088/1475-7516/2024/11/039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a scenario of primordial gravitational atoms (PGAs), which may exist in the current and past universe due to spinning primordial black holes (PBHs) and very light bosonic fields. In a monochromatic mass scenario with a sizable dimensionless spin, which may arise in a short matter dominated (MD) era, we analyze the resulting stochastic gravitational wave background (SGWB) signal. Its spectrum is approximately characterized by a rising ∝ f3 followed by a falling ∝ f-1 where f is the frequency. Then, we investigate the constraints and prospects of such an SGWB, and find that PGAs with a core mass MBH ∼ 𝒪(10) M⊙ and a cloud of light scalar with mass μ ∼ 𝒪 (10-13) eV could yield constraints even stronger than those from bare PBHs. Future detectors such as LISA, Taiji and TianQin are able to explore PGAs over a narrow and elongated strap in the (μ,MBH) plane, spanning over 10 orders of magnitude for the maximum spin, 10-8M⊙ ≲ MBH ≲ 104M⊙, 10-16 eV ≲ μ ≲ 10-3 eV. If the PGA is dressed with a vector cloud, the SGWB signal has a much better opportunity to be probed.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2024/11/039\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/11/039","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The stochastic gravitational wave background from primordial gravitational atoms
We propose a scenario of primordial gravitational atoms (PGAs), which may exist in the current and past universe due to spinning primordial black holes (PBHs) and very light bosonic fields. In a monochromatic mass scenario with a sizable dimensionless spin, which may arise in a short matter dominated (MD) era, we analyze the resulting stochastic gravitational wave background (SGWB) signal. Its spectrum is approximately characterized by a rising ∝ f3 followed by a falling ∝ f-1 where f is the frequency. Then, we investigate the constraints and prospects of such an SGWB, and find that PGAs with a core mass MBH ∼ 𝒪(10) M⊙ and a cloud of light scalar with mass μ ∼ 𝒪 (10-13) eV could yield constraints even stronger than those from bare PBHs. Future detectors such as LISA, Taiji and TianQin are able to explore PGAs over a narrow and elongated strap in the (μ,MBH) plane, spanning over 10 orders of magnitude for the maximum spin, 10-8M⊙ ≲ MBH ≲ 104M⊙, 10-16 eV ≲ μ ≲ 10-3 eV. If the PGA is dressed with a vector cloud, the SGWB signal has a much better opportunity to be probed.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.