用于中波红外变焦成像的元光学三合一装置

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-11-21 DOI:10.1063/5.0227368
Anna Wirth-Singh, Arturo Martin Jimenez, Minho Choi, Johannes E. Fröch, Rose Johnson, Tina Le Teichmann, Zachary Coppens, Arka Majumdar
{"title":"用于中波红外变焦成像的元光学三合一装置","authors":"Anna Wirth-Singh, Arturo Martin Jimenez, Minho Choi, Johannes E. Fröch, Rose Johnson, Tina Le Teichmann, Zachary Coppens, Arka Majumdar","doi":"10.1063/5.0227368","DOIUrl":null,"url":null,"abstract":"Lenses with dynamic focal length, also called zoom functionality, enable a variety of applications related to imaging and sensing. The traditional approach of stacking refractive lenses to achieve this functionality results in an expensive, heavy optical system. Especially for applications in the mid-infrared, light weight and compact form factor are required. In this work, we use a meta-optic triplet to demonstrate zoom imaging at mid-wave infrared wavelengths. By varying the axial distances between the optics, the meta-optic triplet achieves high-quality imaging over a zoom range of 5×, with a 50° full field of view in the widest configuration and an aperture of 8 mm. This triplet system demonstrates the potential for meta-optics to reduce conventional components in complex and multi-functional imaging systems to dramatically thinner and lighter components.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"35 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-optics triplet for zoom imaging at mid-wave infrared\",\"authors\":\"Anna Wirth-Singh, Arturo Martin Jimenez, Minho Choi, Johannes E. Fröch, Rose Johnson, Tina Le Teichmann, Zachary Coppens, Arka Majumdar\",\"doi\":\"10.1063/5.0227368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lenses with dynamic focal length, also called zoom functionality, enable a variety of applications related to imaging and sensing. The traditional approach of stacking refractive lenses to achieve this functionality results in an expensive, heavy optical system. Especially for applications in the mid-infrared, light weight and compact form factor are required. In this work, we use a meta-optic triplet to demonstrate zoom imaging at mid-wave infrared wavelengths. By varying the axial distances between the optics, the meta-optic triplet achieves high-quality imaging over a zoom range of 5×, with a 50° full field of view in the widest configuration and an aperture of 8 mm. This triplet system demonstrates the potential for meta-optics to reduce conventional components in complex and multi-functional imaging systems to dramatically thinner and lighter components.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0227368\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0227368","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

具有动态焦距(也称为变焦功能)的透镜可实现与成像和传感有关的各种应用。通过堆叠折射透镜来实现这一功能的传统方法会导致光学系统既昂贵又笨重。特别是在中红外应用中,需要重量轻、外形紧凑的光学系统。在这项工作中,我们使用元光学三元组来演示中波红外波段的变焦成像。通过改变光学器件之间的轴向距离,元光学三体在 5 倍的变焦范围内实现了高质量成像,最宽配置下的全视场角为 50°,光圈为 8 毫米。该三重系统展示了元光学技术的潜力,可将复杂的多功能成像系统中的传统组件大幅减薄和减轻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Meta-optics triplet for zoom imaging at mid-wave infrared
Lenses with dynamic focal length, also called zoom functionality, enable a variety of applications related to imaging and sensing. The traditional approach of stacking refractive lenses to achieve this functionality results in an expensive, heavy optical system. Especially for applications in the mid-infrared, light weight and compact form factor are required. In this work, we use a meta-optic triplet to demonstrate zoom imaging at mid-wave infrared wavelengths. By varying the axial distances between the optics, the meta-optic triplet achieves high-quality imaging over a zoom range of 5×, with a 50° full field of view in the widest configuration and an aperture of 8 mm. This triplet system demonstrates the potential for meta-optics to reduce conventional components in complex and multi-functional imaging systems to dramatically thinner and lighter components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Meta-optics triplet for zoom imaging at mid-wave infrared Acoustic forces near elastic substrate Convolutional neural network model-based prediction of human muscle activity by analyzing urine in body fluid using Raman spectroscopy Disorder and its impact on mobility of undoped GaN Controllable gradient piezoelectric properties in ferroelectric single crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1