{"title":"基于 Bi2S3/BiOCl 异质结的光电化学传感器,通过原位生长的 Ag2S 量子点进行信号放大,实现伏马菌素 B1 的超灵敏检测","authors":"Pengfei Yu, Meixin Li, Shun Wang, Shanshan Li, Jiaqi Cui, Jun Yang, Shuang Liu, Ling Kong, Zhiwei Chen","doi":"10.1007/s00604-024-06846-8","DOIUrl":null,"url":null,"abstract":"<div><p>Fumonisin B<sub>1</sub> (FB<sub>1</sub>) is a mycotoxin mainly found in corn, peanuts, and wheat crops, which affects human health. Based on bismuth sulfide/bismuth oxychloride (Bi<sub>2</sub>S<sub>3</sub>/BiOCl) composite material, silver sulfide (Ag<sub>2</sub>S) was grown in situ as a quantum dot sensitization signal, and a photoelectrochemical (PEC) aptasensor was designed by layer upon layer modification to detect FB<sub>1</sub>. Bi<sub>2</sub>S<sub>3</sub>/BiOCl has a wide range of visible light absorption, stable chemical properties, and a simple synthesis method. In the construction process, L-ascorbic acid (AA) is selected to provide electrons and inhibit photogenerated electron-hole (e<sup>-</sup>/h<sup>+</sup>) recombination. Under the optimal experimental conditions, the detection range of the fabricated PEC aptasensor was 0.001 ~ 100 ng/mL, and the detection limit was 0.016 pg/mL. The prepared PEC aptasensor has high sensitivity, stability, and reproducibility. The combination of aptamer and PEC sensor provides a novel method for the application of PEC sensor in mycotoxin detection.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 12","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi2S3/BiOCl heterojunction-based photoelectrochemical aptasensor for ultrasensitive assay of fumonisin B1 via signal amplification with in situ grown Ag2S quantum dots\",\"authors\":\"Pengfei Yu, Meixin Li, Shun Wang, Shanshan Li, Jiaqi Cui, Jun Yang, Shuang Liu, Ling Kong, Zhiwei Chen\",\"doi\":\"10.1007/s00604-024-06846-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fumonisin B<sub>1</sub> (FB<sub>1</sub>) is a mycotoxin mainly found in corn, peanuts, and wheat crops, which affects human health. Based on bismuth sulfide/bismuth oxychloride (Bi<sub>2</sub>S<sub>3</sub>/BiOCl) composite material, silver sulfide (Ag<sub>2</sub>S) was grown in situ as a quantum dot sensitization signal, and a photoelectrochemical (PEC) aptasensor was designed by layer upon layer modification to detect FB<sub>1</sub>. Bi<sub>2</sub>S<sub>3</sub>/BiOCl has a wide range of visible light absorption, stable chemical properties, and a simple synthesis method. In the construction process, L-ascorbic acid (AA) is selected to provide electrons and inhibit photogenerated electron-hole (e<sup>-</sup>/h<sup>+</sup>) recombination. Under the optimal experimental conditions, the detection range of the fabricated PEC aptasensor was 0.001 ~ 100 ng/mL, and the detection limit was 0.016 pg/mL. The prepared PEC aptasensor has high sensitivity, stability, and reproducibility. The combination of aptamer and PEC sensor provides a novel method for the application of PEC sensor in mycotoxin detection.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"191 12\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-024-06846-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06846-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Bi2S3/BiOCl heterojunction-based photoelectrochemical aptasensor for ultrasensitive assay of fumonisin B1 via signal amplification with in situ grown Ag2S quantum dots
Fumonisin B1 (FB1) is a mycotoxin mainly found in corn, peanuts, and wheat crops, which affects human health. Based on bismuth sulfide/bismuth oxychloride (Bi2S3/BiOCl) composite material, silver sulfide (Ag2S) was grown in situ as a quantum dot sensitization signal, and a photoelectrochemical (PEC) aptasensor was designed by layer upon layer modification to detect FB1. Bi2S3/BiOCl has a wide range of visible light absorption, stable chemical properties, and a simple synthesis method. In the construction process, L-ascorbic acid (AA) is selected to provide electrons and inhibit photogenerated electron-hole (e-/h+) recombination. Under the optimal experimental conditions, the detection range of the fabricated PEC aptasensor was 0.001 ~ 100 ng/mL, and the detection limit was 0.016 pg/mL. The prepared PEC aptasensor has high sensitivity, stability, and reproducibility. The combination of aptamer and PEC sensor provides a novel method for the application of PEC sensor in mycotoxin detection.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.