自学路径积分混合蒙特卡洛与混合 ab initio 和机器学习势能,用于模拟水中的核量子效应。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL Journal of Chemical Physics Pub Date : 2024-11-28 DOI:10.1063/5.0230464
Bo Thomsen, Yuki Nagai, Keita Kobayashi, Ikutaro Hamada, Motoyuki Shiga
{"title":"自学路径积分混合蒙特卡洛与混合 ab initio 和机器学习势能,用于模拟水中的核量子效应。","authors":"Bo Thomsen, Yuki Nagai, Keita Kobayashi, Ikutaro Hamada, Motoyuki Shiga","doi":"10.1063/5.0230464","DOIUrl":null,"url":null,"abstract":"<p><p>The introduction of machine learned potentials (MLPs) has greatly expanded the space available for studying Nuclear Quantum Effects computationally with ab initio path integral (PI) accuracy, with the MLPs' promise of an accuracy comparable to that of ab initio at a fraction of the cost. One of the challenges in development of MLPs is the need for a large and diverse training set calculated by ab initio methods. This dataset should ideally cover the entire phase space, while not searching this space using ab initio methods, as this would be counterproductive and generally intractable with respect to computational time. In this paper, we present the self-learning PI hybrid Monte Carlo Method using a mixed ab initio and ML potential (SL-PIHMC-MIX), where the mixed potential allows for the study of larger systems and the extension of the original SL-HMC method [Nagai et al., Phys. Rev. B 102, 041124 (2020)] to PI methods and larger systems. While the MLPs generated by this method can be directly applied to run long-time ML-PIMD simulations, we demonstrate that using PIHMC-MIX with the trained MLPs allows for an exact reproduction of the structure obtained from ab initio PIMD. Specifically, we find that the PIHMC-MIX simulations require only 5000 evaluations of the 32-bead structure, compared to the 100 000 evaluations needed for the ab initio PIMD result.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 20","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-learning path integral hybrid Monte Carlo with mixed ab initio and machine learning potentials for modeling nuclear quantum effects in water.\",\"authors\":\"Bo Thomsen, Yuki Nagai, Keita Kobayashi, Ikutaro Hamada, Motoyuki Shiga\",\"doi\":\"10.1063/5.0230464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The introduction of machine learned potentials (MLPs) has greatly expanded the space available for studying Nuclear Quantum Effects computationally with ab initio path integral (PI) accuracy, with the MLPs' promise of an accuracy comparable to that of ab initio at a fraction of the cost. One of the challenges in development of MLPs is the need for a large and diverse training set calculated by ab initio methods. This dataset should ideally cover the entire phase space, while not searching this space using ab initio methods, as this would be counterproductive and generally intractable with respect to computational time. In this paper, we present the self-learning PI hybrid Monte Carlo Method using a mixed ab initio and ML potential (SL-PIHMC-MIX), where the mixed potential allows for the study of larger systems and the extension of the original SL-HMC method [Nagai et al., Phys. Rev. B 102, 041124 (2020)] to PI methods and larger systems. While the MLPs generated by this method can be directly applied to run long-time ML-PIMD simulations, we demonstrate that using PIHMC-MIX with the trained MLPs allows for an exact reproduction of the structure obtained from ab initio PIMD. Specifically, we find that the PIHMC-MIX simulations require only 5000 evaluations of the 32-bead structure, compared to the 100 000 evaluations needed for the ab initio PIMD result.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"161 20\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0230464\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0230464","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

机器学习势(MLPs)的引入极大地扩展了以ab initio路径积分(PI)精度计算研究核量子效应的空间,MLPs承诺以极低的成本实现与ab initio相媲美的精度。开发 MLP 所面临的挑战之一是需要一个由 ab initio 方法计算出来的大型、多样化的训练集。理想情况下,该数据集应涵盖整个相空间,而不是使用 ab initio 方法搜索该空间,因为这样做会适得其反,而且一般来说计算时间也很难控制。在本文中,我们提出了使用混合自始和 ML 势的自学习 PI 混合蒙特卡罗方法(SL-PIHMC-MIX),混合势允许研究更大的系统,并将原始 SL-HMC 方法 [Nagai 等人,Phys. Rev. B 102, 041124 (2020)]扩展到 PI 方法和更大的系统。虽然这种方法生成的 MLPs 可以直接用于运行长时间的 ML-PIMD 模拟,但我们证明,使用 PIHMC-MIX 和训练有素的 MLPs 可以精确再现从 ab initio PIMD 中获得的结构。具体来说,我们发现 PIHMC-MIX 模拟只需要对 32 珠结构进行 5000 次评估,而 ab initio PIMD 结果则需要 100000 次评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-learning path integral hybrid Monte Carlo with mixed ab initio and machine learning potentials for modeling nuclear quantum effects in water.

The introduction of machine learned potentials (MLPs) has greatly expanded the space available for studying Nuclear Quantum Effects computationally with ab initio path integral (PI) accuracy, with the MLPs' promise of an accuracy comparable to that of ab initio at a fraction of the cost. One of the challenges in development of MLPs is the need for a large and diverse training set calculated by ab initio methods. This dataset should ideally cover the entire phase space, while not searching this space using ab initio methods, as this would be counterproductive and generally intractable with respect to computational time. In this paper, we present the self-learning PI hybrid Monte Carlo Method using a mixed ab initio and ML potential (SL-PIHMC-MIX), where the mixed potential allows for the study of larger systems and the extension of the original SL-HMC method [Nagai et al., Phys. Rev. B 102, 041124 (2020)] to PI methods and larger systems. While the MLPs generated by this method can be directly applied to run long-time ML-PIMD simulations, we demonstrate that using PIHMC-MIX with the trained MLPs allows for an exact reproduction of the structure obtained from ab initio PIMD. Specifically, we find that the PIHMC-MIX simulations require only 5000 evaluations of the 32-bead structure, compared to the 100 000 evaluations needed for the ab initio PIMD result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
期刊最新文献
Assessing solvated electron uptake in low-temperature plasma-exposed solutions as a pathway to quantifying plasma electrons. Comparison of intermediate-range order in GeO2 glass: Molecular dynamics using machine-learning interatomic potential vs reverse Monte Carlo fitting to experimental data. Effect of para-substituents on NC bonding of aryl isocyanide molecules adsorbed on metal surfaces studied by sum frequency generation (SFG) spectroscopy. Encapsulation-induced hypsochromic shift of emission properties from a cationic Ir(III) complex in a hydrogen-bonded organic cage: A theoretical study. Enhanced decoupling of conductivity relaxation from structural relaxation in non-stoichiometric protic ionic liquids involving triflic acid and 2-aminoethyl hydrogen sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1