轻度创伤性脑损伤与损伤后亚急性期丘脑亚区体积增加有关

IF 2.9 3区 医学 Q2 NEUROSCIENCES Journal of Neuroscience Research Pub Date : 2024-12-03 DOI:10.1002/jnr.70004
Maggie E. Baird, Richard Beare, Marc L. Seal, Joseph Yuan-Mou Yang, Jacqueline F. I. Anderson
{"title":"轻度创伤性脑损伤与损伤后亚急性期丘脑亚区体积增加有关","authors":"Maggie E. Baird,&nbsp;Richard Beare,&nbsp;Marc L. Seal,&nbsp;Joseph Yuan-Mou Yang,&nbsp;Jacqueline F. I. Anderson","doi":"10.1002/jnr.70004","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Structural vulnerability of the thalamus remains underinvestigated in mild traumatic brain injury (mTBI), and few studies have addressed its constituent nuclei using robust segmentation methods. This study aimed to investigate thalamic subnuclei volume in the subacute period following mTBI. Trauma control (TC) and mTBI patients aged 18–60 years old completed a magnetic resonance imaging (MRI) protocol including both high resolution structural (T1w) and diffusion-weighted sequences at 6–12 weeks following injury (mean: 57 days; SD 11). Each thalamus was segmented into its constituent subnuclei, which were grouped into eight lateralized subregions. Volumes of the subregions were calculated. Neurite Orientation Dispersion and Density (NODDI) maps with parameters optimized for gray matter were computed for the same subregions. Group differences in subregion volumes and NODDI parameters were investigated using Bayesian linear modeling, with age, sex, and estimated intracranial volume included as covariates. Comparisons of mTBI (<i>n</i> = 39) and TC (<i>n</i> = 28) groups revealed evidence of relatively increased gray matter volume in the mTBI group for the bilateral medial and right intralaminar subregions (BF<sub>10</sub> &gt; 3). Of the subregions which showed volume differences, there was no evidence for differences in NODDI metrics between groups. This study demonstrates that in the subacute period following mTBI, there is evidence of increased volume in specific thalamic subregions. Putative mechanisms underpinning the increased volume observed here are disordered remyelination or myelin debris yet to be cleared.</p>\n </div>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"102 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mild Traumatic Brain Injury Is Associated With Increased Thalamic Subregion Volume in the Subacute Period Following Injury\",\"authors\":\"Maggie E. Baird,&nbsp;Richard Beare,&nbsp;Marc L. Seal,&nbsp;Joseph Yuan-Mou Yang,&nbsp;Jacqueline F. I. Anderson\",\"doi\":\"10.1002/jnr.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Structural vulnerability of the thalamus remains underinvestigated in mild traumatic brain injury (mTBI), and few studies have addressed its constituent nuclei using robust segmentation methods. This study aimed to investigate thalamic subnuclei volume in the subacute period following mTBI. Trauma control (TC) and mTBI patients aged 18–60 years old completed a magnetic resonance imaging (MRI) protocol including both high resolution structural (T1w) and diffusion-weighted sequences at 6–12 weeks following injury (mean: 57 days; SD 11). Each thalamus was segmented into its constituent subnuclei, which were grouped into eight lateralized subregions. Volumes of the subregions were calculated. Neurite Orientation Dispersion and Density (NODDI) maps with parameters optimized for gray matter were computed for the same subregions. Group differences in subregion volumes and NODDI parameters were investigated using Bayesian linear modeling, with age, sex, and estimated intracranial volume included as covariates. Comparisons of mTBI (<i>n</i> = 39) and TC (<i>n</i> = 28) groups revealed evidence of relatively increased gray matter volume in the mTBI group for the bilateral medial and right intralaminar subregions (BF<sub>10</sub> &gt; 3). Of the subregions which showed volume differences, there was no evidence for differences in NODDI metrics between groups. This study demonstrates that in the subacute period following mTBI, there is evidence of increased volume in specific thalamic subregions. Putative mechanisms underpinning the increased volume observed here are disordered remyelination or myelin debris yet to be cleared.</p>\\n </div>\",\"PeriodicalId\":16490,\"journal\":{\"name\":\"Journal of Neuroscience Research\",\"volume\":\"102 12\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnr.70004\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnr.70004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在轻度创伤性脑损伤(mTBI)中,丘脑的结构脆弱性仍未得到充分研究,并且很少有研究使用稳健的分割方法来处理其组成核。本研究旨在探讨mTBI后亚急性期丘脑亚核体积的变化。18-60岁的创伤控制(TC)和mTBI患者在损伤后6-12周(平均:57天;SD 11)。每个丘脑被分割成其组成的亚核,这些亚核被分成8个侧化亚区。计算了分区域的体积。在相同的子区域中,计算了针对灰质优化参数的神经突取向弥散和密度(NODDI)图。采用贝叶斯线性模型,以年龄、性别和估计颅内容积为协变量,研究子区域体积和NODDI参数的组间差异。mTBI组(n = 39)和TC组(n = 28)的比较显示,mTBI组双侧内侧和右侧板间亚区(BF10 > 3)的灰质体积相对增加。在显示体积差异的次区域中,没有证据表明组间NODDI指标存在差异。本研究表明,在mTBI后的亚急性期,有证据表明特定丘脑次区域的体积增加。此处观察到的体积增加的推测机制是髓鞘再生紊乱或髓鞘碎片尚未清除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mild Traumatic Brain Injury Is Associated With Increased Thalamic Subregion Volume in the Subacute Period Following Injury

Structural vulnerability of the thalamus remains underinvestigated in mild traumatic brain injury (mTBI), and few studies have addressed its constituent nuclei using robust segmentation methods. This study aimed to investigate thalamic subnuclei volume in the subacute period following mTBI. Trauma control (TC) and mTBI patients aged 18–60 years old completed a magnetic resonance imaging (MRI) protocol including both high resolution structural (T1w) and diffusion-weighted sequences at 6–12 weeks following injury (mean: 57 days; SD 11). Each thalamus was segmented into its constituent subnuclei, which were grouped into eight lateralized subregions. Volumes of the subregions were calculated. Neurite Orientation Dispersion and Density (NODDI) maps with parameters optimized for gray matter were computed for the same subregions. Group differences in subregion volumes and NODDI parameters were investigated using Bayesian linear modeling, with age, sex, and estimated intracranial volume included as covariates. Comparisons of mTBI (n = 39) and TC (n = 28) groups revealed evidence of relatively increased gray matter volume in the mTBI group for the bilateral medial and right intralaminar subregions (BF10 > 3). Of the subregions which showed volume differences, there was no evidence for differences in NODDI metrics between groups. This study demonstrates that in the subacute period following mTBI, there is evidence of increased volume in specific thalamic subregions. Putative mechanisms underpinning the increased volume observed here are disordered remyelination or myelin debris yet to be cleared.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience Research
Journal of Neuroscience Research 医学-神经科学
CiteScore
9.50
自引率
2.40%
发文量
145
审稿时长
1 months
期刊介绍: The Journal of Neuroscience Research (JNR) publishes novel research results that will advance our understanding of the development, function and pathophysiology of the nervous system, using molecular, cellular, systems, and translational approaches. JNR covers both basic research and clinical aspects of neurology, neuropathology, psychiatry or psychology. The journal focuses on uncovering the intricacies of brain structure and function. Research published in JNR covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of the nervous system, with emphasis on how disease modifies the function and organization.
期刊最新文献
Magnetic Resonance Imaging and Anatomical Correlation of Human Temporal Lobe Landmarks in 3D Euclidean Space: A Study of Control and Epilepsy Disease Subjects Transcorneal Electrical Stimulation Modulates Visual Pathway Function in Mice Human Induced Pluripotent Stem Cells: Directed Differentiation Methods and Applications in Brain Diseases EXPRESSION OF CONCERN: Role of the Nrf2-ARE Pathway in Early Brain Injury After Experimental Subarachnoid Hemorrhage Klf10 Regulates the Emergence of Glial Phenotypes During Hypothalamic Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1