{"title":"负性情绪分化促进认知重估:来自脑电图振荡和相幅耦合的证据。","authors":"Yali Wang, Chenyu Shangguan, Sijin Li, Wenhai Zhang","doi":"10.1002/hbm.70092","DOIUrl":null,"url":null,"abstract":"<p>Cognitive reappraisal, an effective emotion regulation strategy, is influenced by various individual factors. Although previous studies have established a link between negative emotion differentiation (NED) and cognitive reappraisal, the underlying neural mechanisms remain largely unknown. Using electroencephalography, this study investigates the influence and neural basis of NED in cognitive reappraisal by integrating aspects of event-related potentials, neural oscillation rhythms, and cross-frequency coupling. The findings revealed that individuals with high NED demonstrated a significant decrease in parietal late positive potential amplitudes during cognitive reappraisal, suggesting enhanced cognitive reappraisal abilities. Moreover, high NED individuals displayed increased γ synchronization, parietal α–γ coupling, and frontal θ–γ coupling when reappraising negative emotions than those with low emotion differentiation ability. Machine learning analysis of these neural indicators highlighted the superior classification and predictive accuracy of multimodal indicators for NED as opposed to unimodal indicators. Overall, this multimodal evidence provides a comprehensive interpretation of the neurophysiological mechanisms through which NED influences cognitive reappraisal and provides preliminary empirical support for personalized cognitive reappraisal interventions to alleviate emotional problems.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"45 17","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626486/pdf/","citationCount":"0","resultStr":"{\"title\":\"Negative Emotion Differentiation Promotes Cognitive Reappraisal: Evidence From Electroencephalogram Oscillations and Phase-Amplitude Coupling\",\"authors\":\"Yali Wang, Chenyu Shangguan, Sijin Li, Wenhai Zhang\",\"doi\":\"10.1002/hbm.70092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cognitive reappraisal, an effective emotion regulation strategy, is influenced by various individual factors. Although previous studies have established a link between negative emotion differentiation (NED) and cognitive reappraisal, the underlying neural mechanisms remain largely unknown. Using electroencephalography, this study investigates the influence and neural basis of NED in cognitive reappraisal by integrating aspects of event-related potentials, neural oscillation rhythms, and cross-frequency coupling. The findings revealed that individuals with high NED demonstrated a significant decrease in parietal late positive potential amplitudes during cognitive reappraisal, suggesting enhanced cognitive reappraisal abilities. Moreover, high NED individuals displayed increased γ synchronization, parietal α–γ coupling, and frontal θ–γ coupling when reappraising negative emotions than those with low emotion differentiation ability. Machine learning analysis of these neural indicators highlighted the superior classification and predictive accuracy of multimodal indicators for NED as opposed to unimodal indicators. Overall, this multimodal evidence provides a comprehensive interpretation of the neurophysiological mechanisms through which NED influences cognitive reappraisal and provides preliminary empirical support for personalized cognitive reappraisal interventions to alleviate emotional problems.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"45 17\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626486/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70092\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70092","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Negative Emotion Differentiation Promotes Cognitive Reappraisal: Evidence From Electroencephalogram Oscillations and Phase-Amplitude Coupling
Cognitive reappraisal, an effective emotion regulation strategy, is influenced by various individual factors. Although previous studies have established a link between negative emotion differentiation (NED) and cognitive reappraisal, the underlying neural mechanisms remain largely unknown. Using electroencephalography, this study investigates the influence and neural basis of NED in cognitive reappraisal by integrating aspects of event-related potentials, neural oscillation rhythms, and cross-frequency coupling. The findings revealed that individuals with high NED demonstrated a significant decrease in parietal late positive potential amplitudes during cognitive reappraisal, suggesting enhanced cognitive reappraisal abilities. Moreover, high NED individuals displayed increased γ synchronization, parietal α–γ coupling, and frontal θ–γ coupling when reappraising negative emotions than those with low emotion differentiation ability. Machine learning analysis of these neural indicators highlighted the superior classification and predictive accuracy of multimodal indicators for NED as opposed to unimodal indicators. Overall, this multimodal evidence provides a comprehensive interpretation of the neurophysiological mechanisms through which NED influences cognitive reappraisal and provides preliminary empirical support for personalized cognitive reappraisal interventions to alleviate emotional problems.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.