高空气湿度下玄武岩的水渠结构:CaSO4·0.625H2O晶体结构。

IF 1.9 3区 化学 Acta Crystallographica Section B-structural Science Pub Date : 2011-12-01 Epub Date: 2011-11-17 DOI:10.1107/S0108768111041759
Horst Schmidt, Iris Paschke, Daniela Freyer, Wolfgang Voigt
{"title":"高空气湿度下玄武岩的水渠结构:CaSO4·0.625H2O晶体结构。","authors":"Horst Schmidt,&nbsp;Iris Paschke,&nbsp;Daniela Freyer,&nbsp;Wolfgang Voigt","doi":"10.1107/S0108768111041759","DOIUrl":null,"url":null,"abstract":"<p><p>Structure analysis using single-crystal diffraction was carried out as a contribution to the dispute about the nature of the water channel structure of bassanite (CaSO(4)·0.5H(2)O). A recent result of Weiss & Bräu (2009) for the crystal structure of bassanite (monoclinic, space group C2) at ambient conditions of air humidity was confirmed. In the presence of high relative air humidity the crystal structure of bassanite transformed due to the incorporation of additional water of hydration. The crystal structure of CaSO(4)·0.625H(2)O was solved by single-crystal diffraction at 298 K and 75% relative air humidity. The experimental results provided an insight into both crystal structures. A model explaining the phase transition from CaSO(4)·0.625H(2)O to CaSO(4)·0.5H(2)O was derived. The monoclinic cell setting of CaSO(4)·0.5H(2)O and the trigonal cell setting of CaSO(4)·0.625H(2)O were confirmed by powder diffraction.</p>","PeriodicalId":7107,"journal":{"name":"Acta Crystallographica Section B-structural Science","volume":"67 Pt 6","pages":"467-75"},"PeriodicalIF":1.9000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S0108768111041759","citationCount":"29","resultStr":"{\"title\":\"Water channel structure of bassanite at high air humidity: crystal structure of CaSO4·0.625H2O.\",\"authors\":\"Horst Schmidt,&nbsp;Iris Paschke,&nbsp;Daniela Freyer,&nbsp;Wolfgang Voigt\",\"doi\":\"10.1107/S0108768111041759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structure analysis using single-crystal diffraction was carried out as a contribution to the dispute about the nature of the water channel structure of bassanite (CaSO(4)·0.5H(2)O). A recent result of Weiss & Bräu (2009) for the crystal structure of bassanite (monoclinic, space group C2) at ambient conditions of air humidity was confirmed. In the presence of high relative air humidity the crystal structure of bassanite transformed due to the incorporation of additional water of hydration. The crystal structure of CaSO(4)·0.625H(2)O was solved by single-crystal diffraction at 298 K and 75% relative air humidity. The experimental results provided an insight into both crystal structures. A model explaining the phase transition from CaSO(4)·0.625H(2)O to CaSO(4)·0.5H(2)O was derived. The monoclinic cell setting of CaSO(4)·0.5H(2)O and the trigonal cell setting of CaSO(4)·0.625H(2)O were confirmed by powder diffraction.</p>\",\"PeriodicalId\":7107,\"journal\":{\"name\":\"Acta Crystallographica Section B-structural Science\",\"volume\":\"67 Pt 6\",\"pages\":\"467-75\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1107/S0108768111041759\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section B-structural Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1107/S0108768111041759\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B-structural Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S0108768111041759","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/11/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

利用单晶衍射法对玄武岩(CaSO(4)·0.5H(2)O)的水渠结构性质进行了分析。Weiss & Bräu(2009)最近对空气湿度环境条件下的玄武岩(单斜晶,空间群C2)晶体结构的研究结果得到了证实。在较高的相对空气湿度条件下,由于水化水的加入,玄武岩的晶体结构发生了变化。在298 K和75%相对空气湿度条件下,用单晶衍射法解析了CaSO(4)·0.625H(2)O的晶体结构。实验结果提供了对这两种晶体结构的深入了解。建立了CaSO(4)·0.625H(2)O向CaSO(4)·0.5H(2)O相变的模型。粉末衍射证实了CaSO(4)·0.5H(2)O为单斜晶胞结构,CaSO(4)·0.625H(2)O为三角晶胞结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Water channel structure of bassanite at high air humidity: crystal structure of CaSO4·0.625H2O.

Structure analysis using single-crystal diffraction was carried out as a contribution to the dispute about the nature of the water channel structure of bassanite (CaSO(4)·0.5H(2)O). A recent result of Weiss & Bräu (2009) for the crystal structure of bassanite (monoclinic, space group C2) at ambient conditions of air humidity was confirmed. In the presence of high relative air humidity the crystal structure of bassanite transformed due to the incorporation of additional water of hydration. The crystal structure of CaSO(4)·0.625H(2)O was solved by single-crystal diffraction at 298 K and 75% relative air humidity. The experimental results provided an insight into both crystal structures. A model explaining the phase transition from CaSO(4)·0.625H(2)O to CaSO(4)·0.5H(2)O was derived. The monoclinic cell setting of CaSO(4)·0.5H(2)O and the trigonal cell setting of CaSO(4)·0.625H(2)O were confirmed by powder diffraction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.30%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.
期刊最新文献
The charge-flipping algorithm in crystallography. The role of the coordination defect (CD) in the structures of anion-deficient, fluorite-related compounds. Structural transformations in the low-temperature grown GaAs with superlattices of Sb and P δ-layers. Electronic influence of β-diketonato-type ligands on the coordination of 1,5-cyclooctadiene to palladium(II) as defined by 'Venus fly trap' geometric parameters. Weak intermolecular hydrogen and halogen interactions in an isomorphous halogen series of pseudoterpyridine Zn(II) complexes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1