Ravi V Gutlapalli, Jyothsna L Ambaru, Pavani Darla, K R S Sambasiva Rao
{"title":"全基因组搜索鉴定炭疽芽孢杆菌的潜在药物靶点。","authors":"Ravi V Gutlapalli, Jyothsna L Ambaru, Pavani Darla, K R S Sambasiva Rao","doi":"10.1504/IJCBDD.2012.048311","DOIUrl":null,"url":null,"abstract":"<p><p>With the heightened interest in Bacillus anthracis as a potential biological threat agent, novel drug targets identification is of great importance in drug discovery. This study considered a genome-wide approach to identify 270 non-redundant, non-human homologous genes and 103 essential genes of the bacteria as putative drug targets. Sub-cellular localisation of each drug target was annotated using PSORTb 3.0 and confirmation by a hybrid support vector machine analysis identified 16 membrane-bound genes with reliability index ≥4. SPAAN analysis predicted 3 adhesion-like proteins and BLAST against the MEROPS database identified 7 peptidases with inhibitors. As a case study, a homology model was built for the ptsG gene using Modeller 9v8. The work reported here identified a small subset of potential drug targets involved in vital aspects of the metabolism of pathogen, persistence, virulence and cell wall biosynthesis. Thus, this manifold workflow can speed up the process of drug target discovery.</p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"5 2","pages":"164-79"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJCBDD.2012.048311","citationCount":"1","resultStr":"{\"title\":\"Genome wide search for identification of potential drug targets in Bacillus anthracis.\",\"authors\":\"Ravi V Gutlapalli, Jyothsna L Ambaru, Pavani Darla, K R S Sambasiva Rao\",\"doi\":\"10.1504/IJCBDD.2012.048311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the heightened interest in Bacillus anthracis as a potential biological threat agent, novel drug targets identification is of great importance in drug discovery. This study considered a genome-wide approach to identify 270 non-redundant, non-human homologous genes and 103 essential genes of the bacteria as putative drug targets. Sub-cellular localisation of each drug target was annotated using PSORTb 3.0 and confirmation by a hybrid support vector machine analysis identified 16 membrane-bound genes with reliability index ≥4. SPAAN analysis predicted 3 adhesion-like proteins and BLAST against the MEROPS database identified 7 peptidases with inhibitors. As a case study, a homology model was built for the ptsG gene using Modeller 9v8. The work reported here identified a small subset of potential drug targets involved in vital aspects of the metabolism of pathogen, persistence, virulence and cell wall biosynthesis. Thus, this manifold workflow can speed up the process of drug target discovery.</p>\",\"PeriodicalId\":39227,\"journal\":{\"name\":\"International Journal of Computational Biology and Drug Design\",\"volume\":\"5 2\",\"pages\":\"164-79\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJCBDD.2012.048311\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Biology and Drug Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCBDD.2012.048311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2012.048311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/7/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Genome wide search for identification of potential drug targets in Bacillus anthracis.
With the heightened interest in Bacillus anthracis as a potential biological threat agent, novel drug targets identification is of great importance in drug discovery. This study considered a genome-wide approach to identify 270 non-redundant, non-human homologous genes and 103 essential genes of the bacteria as putative drug targets. Sub-cellular localisation of each drug target was annotated using PSORTb 3.0 and confirmation by a hybrid support vector machine analysis identified 16 membrane-bound genes with reliability index ≥4. SPAAN analysis predicted 3 adhesion-like proteins and BLAST against the MEROPS database identified 7 peptidases with inhibitors. As a case study, a homology model was built for the ptsG gene using Modeller 9v8. The work reported here identified a small subset of potential drug targets involved in vital aspects of the metabolism of pathogen, persistence, virulence and cell wall biosynthesis. Thus, this manifold workflow can speed up the process of drug target discovery.