Sebastian Schlitt, Tatiana E Gorelik, Andrew A Stewart, Elmar Schömer, Thorsten Raasch, Ute Kolb
{"title":"聚类技术在电子衍射数据中的应用:单胞参数的测定。","authors":"Sebastian Schlitt, Tatiana E Gorelik, Andrew A Stewart, Elmar Schömer, Thorsten Raasch, Ute Kolb","doi":"10.1107/S0108767312026438","DOIUrl":null,"url":null,"abstract":"<p><p>A new approach to determining the unit-cell vectors from single-crystal diffraction data based on clustering analysis is proposed. The method uses the density-based clustering algorithm DBSCAN. Unit-cell determination through the clustering procedure is particularly useful for limited tilt sequences and noisy data, and therefore is optimal for single-crystal electron-diffraction automated diffraction tomography (ADT) data. The unit-cell determination of various materials from ADT data as well as single-crystal X-ray data is demonstrated.</p>","PeriodicalId":7400,"journal":{"name":"Acta Crystallographica Section A","volume":"68 Pt 5","pages":"536-46"},"PeriodicalIF":1.8000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S0108767312026438","citationCount":"25","resultStr":"{\"title\":\"Application of clustering techniques to electron-diffraction data: determination of unit-cell parameters.\",\"authors\":\"Sebastian Schlitt, Tatiana E Gorelik, Andrew A Stewart, Elmar Schömer, Thorsten Raasch, Ute Kolb\",\"doi\":\"10.1107/S0108767312026438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A new approach to determining the unit-cell vectors from single-crystal diffraction data based on clustering analysis is proposed. The method uses the density-based clustering algorithm DBSCAN. Unit-cell determination through the clustering procedure is particularly useful for limited tilt sequences and noisy data, and therefore is optimal for single-crystal electron-diffraction automated diffraction tomography (ADT) data. The unit-cell determination of various materials from ADT data as well as single-crystal X-ray data is demonstrated.</p>\",\"PeriodicalId\":7400,\"journal\":{\"name\":\"Acta Crystallographica Section A\",\"volume\":\"68 Pt 5\",\"pages\":\"536-46\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1107/S0108767312026438\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S0108767312026438\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/7/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S0108767312026438","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/7/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Application of clustering techniques to electron-diffraction data: determination of unit-cell parameters.
A new approach to determining the unit-cell vectors from single-crystal diffraction data based on clustering analysis is proposed. The method uses the density-based clustering algorithm DBSCAN. Unit-cell determination through the clustering procedure is particularly useful for limited tilt sequences and noisy data, and therefore is optimal for single-crystal electron-diffraction automated diffraction tomography (ADT) data. The unit-cell determination of various materials from ADT data as well as single-crystal X-ray data is demonstrated.
期刊介绍:
Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials.
The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial.
The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.