{"title":"参与蛋白聚糖连接区生物合成的糖基转移酶的研究进展。","authors":"Jia Gao, Xuefei Huang","doi":"10.1016/bs.accb.2021.10.003","DOIUrl":null,"url":null,"abstract":"<p><p>Proteoglycans (PGs) are an essential family of glycoproteins, which can play roles in many important biological events including cell proliferation, cancer development, and pathogen infections. Proteoglycans consist of a core protein with one or multiple glycosaminoglycan (GAG) chains, which are covalently attached to serine residues of serine-glycine dipeptide within the core protein through a common tetrasaccharide linkage. In the past three decades, four key glycosyl transferases involved in the biosynthesis of PG linkage have been discovered and investigated. This review aims to provide an overview on progress made on these four enzymes, with foci on enzyme expression/purification, substrate specificity, activity determination, product characterization, and structure-activity relationship analysis.</p>","PeriodicalId":7215,"journal":{"name":"Advances in carbohydrate chemistry and biochemistry","volume":"80 ","pages":"95-119"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112072/pdf/nihms-1806823.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent advances on glycosyltransferases involved in the biosynthesis of the proteoglycan linkage region.\",\"authors\":\"Jia Gao, Xuefei Huang\",\"doi\":\"10.1016/bs.accb.2021.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteoglycans (PGs) are an essential family of glycoproteins, which can play roles in many important biological events including cell proliferation, cancer development, and pathogen infections. Proteoglycans consist of a core protein with one or multiple glycosaminoglycan (GAG) chains, which are covalently attached to serine residues of serine-glycine dipeptide within the core protein through a common tetrasaccharide linkage. In the past three decades, four key glycosyl transferases involved in the biosynthesis of PG linkage have been discovered and investigated. This review aims to provide an overview on progress made on these four enzymes, with foci on enzyme expression/purification, substrate specificity, activity determination, product characterization, and structure-activity relationship analysis.</p>\",\"PeriodicalId\":7215,\"journal\":{\"name\":\"Advances in carbohydrate chemistry and biochemistry\",\"volume\":\"80 \",\"pages\":\"95-119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112072/pdf/nihms-1806823.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in carbohydrate chemistry and biochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.accb.2021.10.003\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in carbohydrate chemistry and biochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/bs.accb.2021.10.003","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
Recent advances on glycosyltransferases involved in the biosynthesis of the proteoglycan linkage region.
Proteoglycans (PGs) are an essential family of glycoproteins, which can play roles in many important biological events including cell proliferation, cancer development, and pathogen infections. Proteoglycans consist of a core protein with one or multiple glycosaminoglycan (GAG) chains, which are covalently attached to serine residues of serine-glycine dipeptide within the core protein through a common tetrasaccharide linkage. In the past three decades, four key glycosyl transferases involved in the biosynthesis of PG linkage have been discovered and investigated. This review aims to provide an overview on progress made on these four enzymes, with foci on enzyme expression/purification, substrate specificity, activity determination, product characterization, and structure-activity relationship analysis.
期刊介绍:
Advances in Carbohydrate Chemistry and Biochemistry has provided, since its inception in 1945, critical and informative articles written by research specialists that integrate the industrial, analytical, and technological aspects of biochemistry, organic chemistry, and instrumentation methodology to the study of carbohydrates. Its articles present a definitive interpretation of the current status and future trends in carbohydrate chemistry and biochemistry.