{"title":"利用干酪乳杆菌AP和AG菌株生产发酵乳中的外多糖。","authors":"Hafidh Shofwan Maajid, Nurliyani Nurliyani, Widodo Widodo","doi":"10.3934/microbiol.2022012","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the ability of two strains of bacterial starter cultures, <i>Lactobacillus casei</i> AP (AP) and <i>Lactobacillus casei</i> AG (AG), to produce exopolysaccharides (EPSs). First, the physicochemical properties of the fermented milk produced by AP and AG were assessed, including physical qualities like viscosity and syneresis and chemical qualities, such as pH, acidity, protein, lactose, fat content, and total solid. Then, AP and AG's ability to produce EPS was measured. Additionally, the EPS' microstructure was observed using a scanning electron microscope, and its chemical structure was assessed using Fourier transform-infrared (FT-IR) spectroscopy. Also, AP and AG's ability to produce EPS was tracked at the molecular level by studying the glycosyltransferase (<i>gtf</i>) gene. Statistical analysis showed that the milk fermented using AP and AG had similar physicochemical qualities (P > 0.05) but significantly different physical qualities (P < 0.05). Additionally, the milk fermented with AP had lower viscosity (1137.33 ± 34.31 centiPoise) than AG (1221.50 ± 20.66 centiPoise). In addition, the milk fermented using AP had higher syneresis (19.42%) than AG (17.83%). The higher viscosity and lower syneresis in the milk fermented using AG were associated with AG's ability to produce more EPS (1409 mg/L) than AP (1204 mg/L). In addition, according to the FT-IR analysis, the AP- and AG-synthesized EPS contained absorption bands at 3323, 2980, 2901, 1642, 1084, 1043, and 873 cm<sup>-1</sup>. The absorption band at 1642 and 2980 cm<sup>-1</sup> corresponds to carbonyl and methylene groups, respectively. Absorption band 873 cm<sup>-1</sup> is characteristic of the α-glycosidic bond of α-glucan in EPS. Moreover, the absorption bands on the wavelength region corresponding to the functional groups in the AP- and AG-produced EPS were similar to those in commercially available EPS. Lastly, <i>gtf</i>, contributing to EPS synthesis, was found in the genomes of AP and AG, suggesting the role of glycosyltransferase in the EPS synthesis by both strains.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"8 2","pages":"138-152"},"PeriodicalIF":2.7000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329877/pdf/","citationCount":"1","resultStr":"{\"title\":\"Exopolysaccharide production in fermented milk using <i>Lactobacillus casei</i> strains AP and AG.\",\"authors\":\"Hafidh Shofwan Maajid, Nurliyani Nurliyani, Widodo Widodo\",\"doi\":\"10.3934/microbiol.2022012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluated the ability of two strains of bacterial starter cultures, <i>Lactobacillus casei</i> AP (AP) and <i>Lactobacillus casei</i> AG (AG), to produce exopolysaccharides (EPSs). First, the physicochemical properties of the fermented milk produced by AP and AG were assessed, including physical qualities like viscosity and syneresis and chemical qualities, such as pH, acidity, protein, lactose, fat content, and total solid. Then, AP and AG's ability to produce EPS was measured. Additionally, the EPS' microstructure was observed using a scanning electron microscope, and its chemical structure was assessed using Fourier transform-infrared (FT-IR) spectroscopy. Also, AP and AG's ability to produce EPS was tracked at the molecular level by studying the glycosyltransferase (<i>gtf</i>) gene. Statistical analysis showed that the milk fermented using AP and AG had similar physicochemical qualities (P > 0.05) but significantly different physical qualities (P < 0.05). Additionally, the milk fermented with AP had lower viscosity (1137.33 ± 34.31 centiPoise) than AG (1221.50 ± 20.66 centiPoise). In addition, the milk fermented using AP had higher syneresis (19.42%) than AG (17.83%). The higher viscosity and lower syneresis in the milk fermented using AG were associated with AG's ability to produce more EPS (1409 mg/L) than AP (1204 mg/L). In addition, according to the FT-IR analysis, the AP- and AG-synthesized EPS contained absorption bands at 3323, 2980, 2901, 1642, 1084, 1043, and 873 cm<sup>-1</sup>. The absorption band at 1642 and 2980 cm<sup>-1</sup> corresponds to carbonyl and methylene groups, respectively. Absorption band 873 cm<sup>-1</sup> is characteristic of the α-glycosidic bond of α-glucan in EPS. Moreover, the absorption bands on the wavelength region corresponding to the functional groups in the AP- and AG-produced EPS were similar to those in commercially available EPS. Lastly, <i>gtf</i>, contributing to EPS synthesis, was found in the genomes of AP and AG, suggesting the role of glycosyltransferase in the EPS synthesis by both strains.</p>\",\"PeriodicalId\":46108,\"journal\":{\"name\":\"AIMS Microbiology\",\"volume\":\"8 2\",\"pages\":\"138-152\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329877/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/microbiol.2022012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/microbiol.2022012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Exopolysaccharide production in fermented milk using Lactobacillus casei strains AP and AG.
This study evaluated the ability of two strains of bacterial starter cultures, Lactobacillus casei AP (AP) and Lactobacillus casei AG (AG), to produce exopolysaccharides (EPSs). First, the physicochemical properties of the fermented milk produced by AP and AG were assessed, including physical qualities like viscosity and syneresis and chemical qualities, such as pH, acidity, protein, lactose, fat content, and total solid. Then, AP and AG's ability to produce EPS was measured. Additionally, the EPS' microstructure was observed using a scanning electron microscope, and its chemical structure was assessed using Fourier transform-infrared (FT-IR) spectroscopy. Also, AP and AG's ability to produce EPS was tracked at the molecular level by studying the glycosyltransferase (gtf) gene. Statistical analysis showed that the milk fermented using AP and AG had similar physicochemical qualities (P > 0.05) but significantly different physical qualities (P < 0.05). Additionally, the milk fermented with AP had lower viscosity (1137.33 ± 34.31 centiPoise) than AG (1221.50 ± 20.66 centiPoise). In addition, the milk fermented using AP had higher syneresis (19.42%) than AG (17.83%). The higher viscosity and lower syneresis in the milk fermented using AG were associated with AG's ability to produce more EPS (1409 mg/L) than AP (1204 mg/L). In addition, according to the FT-IR analysis, the AP- and AG-synthesized EPS contained absorption bands at 3323, 2980, 2901, 1642, 1084, 1043, and 873 cm-1. The absorption band at 1642 and 2980 cm-1 corresponds to carbonyl and methylene groups, respectively. Absorption band 873 cm-1 is characteristic of the α-glycosidic bond of α-glucan in EPS. Moreover, the absorption bands on the wavelength region corresponding to the functional groups in the AP- and AG-produced EPS were similar to those in commercially available EPS. Lastly, gtf, contributing to EPS synthesis, was found in the genomes of AP and AG, suggesting the role of glycosyltransferase in the EPS synthesis by both strains.