{"title":"miR-210-3p通过靶向Dtx1在妊娠糖尿病中损害胰腺β细胞功能","authors":"Xiaohui Cao, Bin Lu, Ying Gu, Xiaodan Li, Danfeng Guo, Fei Xia","doi":"10.1615/JEnvironPatholToxicolOncol.2022041670","DOIUrl":null,"url":null,"abstract":"<p><p>Gestational diabetes mellitus (GDM), a common complication in pregnancy, could threaten the health of both pregnancies and their offspring. miR-210-3p has been reported that play a crucial role in many diseases. Nevertheless, the molecular mechanism and clinical significance of miR-210-3p in the GDM is still unclear. miR-210-3p was overexpressed in the pancreas of the GDM mouse model. Meanwhile, miR-210-3p weakens cell viability and promotes the apoptosis of pancreatic β cells, impairing the function of pancreatic β cells. Bioinformatics analysis showed that miR-210-3p directly targets the expression of Dtx1, and miR-210-3p negatively regulated dtx1. Down-expression of Dtx1 could increase the expression of insulin and boost the function of pancreatic β cells through inhibiting expressions of p-Akt, p-mTOR, p-4E-BP1, and p-SGK1. Rescue experiments verified that miR-210-3p could regulate the function of pancreatic β cells and adjust the content of TG, TC, and HDL in the blood of mice with GDM via regulating the expression of Dtx1. The study demonstrated that miR-210-3p is significantly overexpressed in the pancreas of the GDM mouse model, which could impair the function and cell viability of pancreatic β cells via suppressing the expression of Dtx1 promotes the progression of GDM. These findings provide a novel strategy to treat GDM.</p>","PeriodicalId":50201,"journal":{"name":"Journal of Environmental Pathology Toxicology and Oncology","volume":"41 4","pages":"11-23"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-210-3p Impairs Pancreatic β-Cell Function by Targeting Dtx1 in Gestational Diabetes Mellitus.\",\"authors\":\"Xiaohui Cao, Bin Lu, Ying Gu, Xiaodan Li, Danfeng Guo, Fei Xia\",\"doi\":\"10.1615/JEnvironPatholToxicolOncol.2022041670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gestational diabetes mellitus (GDM), a common complication in pregnancy, could threaten the health of both pregnancies and their offspring. miR-210-3p has been reported that play a crucial role in many diseases. Nevertheless, the molecular mechanism and clinical significance of miR-210-3p in the GDM is still unclear. miR-210-3p was overexpressed in the pancreas of the GDM mouse model. Meanwhile, miR-210-3p weakens cell viability and promotes the apoptosis of pancreatic β cells, impairing the function of pancreatic β cells. Bioinformatics analysis showed that miR-210-3p directly targets the expression of Dtx1, and miR-210-3p negatively regulated dtx1. Down-expression of Dtx1 could increase the expression of insulin and boost the function of pancreatic β cells through inhibiting expressions of p-Akt, p-mTOR, p-4E-BP1, and p-SGK1. Rescue experiments verified that miR-210-3p could regulate the function of pancreatic β cells and adjust the content of TG, TC, and HDL in the blood of mice with GDM via regulating the expression of Dtx1. The study demonstrated that miR-210-3p is significantly overexpressed in the pancreas of the GDM mouse model, which could impair the function and cell viability of pancreatic β cells via suppressing the expression of Dtx1 promotes the progression of GDM. These findings provide a novel strategy to treat GDM.</p>\",\"PeriodicalId\":50201,\"journal\":{\"name\":\"Journal of Environmental Pathology Toxicology and Oncology\",\"volume\":\"41 4\",\"pages\":\"11-23\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Pathology Toxicology and Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1615/JEnvironPatholToxicolOncol.2022041670\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Pathology Toxicology and Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/JEnvironPatholToxicolOncol.2022041670","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
miR-210-3p Impairs Pancreatic β-Cell Function by Targeting Dtx1 in Gestational Diabetes Mellitus.
Gestational diabetes mellitus (GDM), a common complication in pregnancy, could threaten the health of both pregnancies and their offspring. miR-210-3p has been reported that play a crucial role in many diseases. Nevertheless, the molecular mechanism and clinical significance of miR-210-3p in the GDM is still unclear. miR-210-3p was overexpressed in the pancreas of the GDM mouse model. Meanwhile, miR-210-3p weakens cell viability and promotes the apoptosis of pancreatic β cells, impairing the function of pancreatic β cells. Bioinformatics analysis showed that miR-210-3p directly targets the expression of Dtx1, and miR-210-3p negatively regulated dtx1. Down-expression of Dtx1 could increase the expression of insulin and boost the function of pancreatic β cells through inhibiting expressions of p-Akt, p-mTOR, p-4E-BP1, and p-SGK1. Rescue experiments verified that miR-210-3p could regulate the function of pancreatic β cells and adjust the content of TG, TC, and HDL in the blood of mice with GDM via regulating the expression of Dtx1. The study demonstrated that miR-210-3p is significantly overexpressed in the pancreas of the GDM mouse model, which could impair the function and cell viability of pancreatic β cells via suppressing the expression of Dtx1 promotes the progression of GDM. These findings provide a novel strategy to treat GDM.
期刊介绍:
The Journal of Environmental Pathology, Toxicology and Oncology publishes original research and reviews of factors and conditions that affect human and animal carcinogensis. Scientists in various fields of biological research, such as toxicologists, chemists, immunologists, pharmacologists, oncologists, pneumologists, and industrial technologists, will find this journal useful in their research on the interface between the environment, humans, and animals.