{"title":"利用渗透休克和苯扎氯铵从噬菌体中生产泰洛菌素。","authors":"Cedric Woudstra, Lone Brøndsted","doi":"10.1089/phage.2023.0014","DOIUrl":null,"url":null,"abstract":"<p><p>In the light of the worldwide antimicrobial resistance crisis, new substitutes to antibiotics are urgently needed. Tailocins or phage tail-like bacteriocin particles, produced by bacteria for environmental competition, are a potential antimicrobial alternative to antibiotic treatment. Yet, the availability of characterized Tailocins is limited. We explored the possibility to produce new Tailocins from phage particles, using osmotic shock or chemical treatment by the ammonium quaternary compound benzalkonium chloride on <i>Ackermannviridae</i> phage S117 and using <i>Straboviridae</i> phage T4 as control. We report that phage S117 was resistant to such treatment, while successful production of Tailocins by osmotic shock was achieved for phage T4. Finally, chemical treatment with benzalkonium chloride was inefficient on phage S117 but successfully inactivated phage T4 without production of Tailocins. Further studies are needed to implement such treatments of phages for producing Tailocins with killing activity.</p>","PeriodicalId":74428,"journal":{"name":"PHAGE (New Rochelle, N.Y.)","volume":"4 3","pages":"136-140"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574523/pdf/phage.2023.0014.pdf","citationCount":"1","resultStr":"{\"title\":\"Producing Tailocins from Phages Using Osmotic Shock and Benzalkonium Chloride.\",\"authors\":\"Cedric Woudstra, Lone Brøndsted\",\"doi\":\"10.1089/phage.2023.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the light of the worldwide antimicrobial resistance crisis, new substitutes to antibiotics are urgently needed. Tailocins or phage tail-like bacteriocin particles, produced by bacteria for environmental competition, are a potential antimicrobial alternative to antibiotic treatment. Yet, the availability of characterized Tailocins is limited. We explored the possibility to produce new Tailocins from phage particles, using osmotic shock or chemical treatment by the ammonium quaternary compound benzalkonium chloride on <i>Ackermannviridae</i> phage S117 and using <i>Straboviridae</i> phage T4 as control. We report that phage S117 was resistant to such treatment, while successful production of Tailocins by osmotic shock was achieved for phage T4. Finally, chemical treatment with benzalkonium chloride was inefficient on phage S117 but successfully inactivated phage T4 without production of Tailocins. Further studies are needed to implement such treatments of phages for producing Tailocins with killing activity.</p>\",\"PeriodicalId\":74428,\"journal\":{\"name\":\"PHAGE (New Rochelle, N.Y.)\",\"volume\":\"4 3\",\"pages\":\"136-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574523/pdf/phage.2023.0014.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHAGE (New Rochelle, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/phage.2023.0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHAGE (New Rochelle, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/phage.2023.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Producing Tailocins from Phages Using Osmotic Shock and Benzalkonium Chloride.
In the light of the worldwide antimicrobial resistance crisis, new substitutes to antibiotics are urgently needed. Tailocins or phage tail-like bacteriocin particles, produced by bacteria for environmental competition, are a potential antimicrobial alternative to antibiotic treatment. Yet, the availability of characterized Tailocins is limited. We explored the possibility to produce new Tailocins from phage particles, using osmotic shock or chemical treatment by the ammonium quaternary compound benzalkonium chloride on Ackermannviridae phage S117 and using Straboviridae phage T4 as control. We report that phage S117 was resistant to such treatment, while successful production of Tailocins by osmotic shock was achieved for phage T4. Finally, chemical treatment with benzalkonium chloride was inefficient on phage S117 but successfully inactivated phage T4 without production of Tailocins. Further studies are needed to implement such treatments of phages for producing Tailocins with killing activity.