Guojun Zhang, Feng Ni, Liu Hong, Jiang Zainan, Guocai Yang, Li Chongyang
{"title":"从人类演示中学习机器人皮带磨削的阻抗调节技能","authors":"Guojun Zhang, Feng Ni, Liu Hong, Jiang Zainan, Guocai Yang, Li Chongyang","doi":"10.1108/AA-08-2020-0110","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to transfer the impedance regulation of manual belt grinding to robot belt grinding control.,This paper presents a novel methodology for transmitting human impedance regulation skills to robot control in robot belt grinding. First, according to the human grinding experimental data, the skilled worker’s arm impedance regulation is calculated. Next, the human skills are encapsulated as the statistical learning model where the kernel parameters are learned from the demonstration data by Gaussian process regression (GPR) algorithms. The desired profiles of robot are generated by the task planner based on the learned skill knowledge model. Lastly, the learned skill knowledge model is integrated with an adaptive hybrid position-force controller over the trajectory and force of end-effector in robot belt grinding task.,Manual grinding skills are represented and transferred to robot belt grinding for higher grinding quality of the workpiece.,The impedance of the manual grinding is estimated by k-means++ algorithm at different grinding phases. Manual grinding skills (e.g. trajectory, impedance regulation) are represented and modeled by GMM and GPR algorithms. The desired trajectory, force and impedance of robot are generated by the planner based on the learned skills knowledge model. An adaptive hybrid position-force controller is designed based on learned skill knowledge model. This paper proposes a torque-tracking controller to suppress the vibration in robot belt grinding process.","PeriodicalId":55448,"journal":{"name":"Assembly Automation","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Learning impedance regulation skills for robot belt grinding from human demonstrations\",\"authors\":\"Guojun Zhang, Feng Ni, Liu Hong, Jiang Zainan, Guocai Yang, Li Chongyang\",\"doi\":\"10.1108/AA-08-2020-0110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to transfer the impedance regulation of manual belt grinding to robot belt grinding control.,This paper presents a novel methodology for transmitting human impedance regulation skills to robot control in robot belt grinding. First, according to the human grinding experimental data, the skilled worker’s arm impedance regulation is calculated. Next, the human skills are encapsulated as the statistical learning model where the kernel parameters are learned from the demonstration data by Gaussian process regression (GPR) algorithms. The desired profiles of robot are generated by the task planner based on the learned skill knowledge model. Lastly, the learned skill knowledge model is integrated with an adaptive hybrid position-force controller over the trajectory and force of end-effector in robot belt grinding task.,Manual grinding skills are represented and transferred to robot belt grinding for higher grinding quality of the workpiece.,The impedance of the manual grinding is estimated by k-means++ algorithm at different grinding phases. Manual grinding skills (e.g. trajectory, impedance regulation) are represented and modeled by GMM and GPR algorithms. The desired trajectory, force and impedance of robot are generated by the planner based on the learned skills knowledge model. An adaptive hybrid position-force controller is designed based on learned skill knowledge model. This paper proposes a torque-tracking controller to suppress the vibration in robot belt grinding process.\",\"PeriodicalId\":55448,\"journal\":{\"name\":\"Assembly Automation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assembly Automation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/AA-08-2020-0110\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assembly Automation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/AA-08-2020-0110","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Learning impedance regulation skills for robot belt grinding from human demonstrations
The purpose of this paper is to transfer the impedance regulation of manual belt grinding to robot belt grinding control.,This paper presents a novel methodology for transmitting human impedance regulation skills to robot control in robot belt grinding. First, according to the human grinding experimental data, the skilled worker’s arm impedance regulation is calculated. Next, the human skills are encapsulated as the statistical learning model where the kernel parameters are learned from the demonstration data by Gaussian process regression (GPR) algorithms. The desired profiles of robot are generated by the task planner based on the learned skill knowledge model. Lastly, the learned skill knowledge model is integrated with an adaptive hybrid position-force controller over the trajectory and force of end-effector in robot belt grinding task.,Manual grinding skills are represented and transferred to robot belt grinding for higher grinding quality of the workpiece.,The impedance of the manual grinding is estimated by k-means++ algorithm at different grinding phases. Manual grinding skills (e.g. trajectory, impedance regulation) are represented and modeled by GMM and GPR algorithms. The desired trajectory, force and impedance of robot are generated by the planner based on the learned skills knowledge model. An adaptive hybrid position-force controller is designed based on learned skill knowledge model. This paper proposes a torque-tracking controller to suppress the vibration in robot belt grinding process.
期刊介绍:
Assembly Automation publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of assembly technology and automation, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of industry developments.
All research articles undergo rigorous double-blind peer review, and the journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations.